Containing a spread through sequential learning: to exploit or to
explore?
- URL: http://arxiv.org/abs/2303.00141v2
- Date: Thu, 23 Mar 2023 04:26:19 GMT
- Title: Containing a spread through sequential learning: to exploit or to
explore?
- Authors: Xingran Chen, Hesam Nikpey, Jungyeol Kim, Saswati Sarkar, Shirin
Saeedi-Bidokhti
- Abstract summary: We design testing and isolation strategies to contain the spread and minimize the cumulative infections under a given test budget.
We show that exploration can outperform exploitation in various synthetic and real-data networks depending on the parameters of the network and the spread.
- Score: 11.86456063377268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The spread of an undesirable contact process, such as an infectious disease
(e.g. COVID-19), is contained through testing and isolation of infected nodes.
The temporal and spatial evolution of the process (along with containment
through isolation) render such detection as fundamentally different from active
search detection strategies. In this work, through an active learning approach,
we design testing and isolation strategies to contain the spread and minimize
the cumulative infections under a given test budget. We prove that the
objective can be optimized, with performance guarantees, by greedily selecting
the nodes to test. We further design reward-based methodologies that
effectively minimize an upper bound on the cumulative infections and are
computationally more tractable in large networks. These policies, however, need
knowledge about the nodes' infection probabilities which are dynamically
changing and have to be learned by sequential testing. We develop a
message-passing framework for this purpose and, building on that, show novel
tradeoffs between exploitation of knowledge through reward-based heuristics and
exploration of the unknown through a carefully designed probabilistic testing.
The tradeoffs are fundamentally distinct from the classical counterparts under
active search or multi-armed bandit problems (MABs). We provably show the
necessity of exploration in a stylized network and show through simulations
that exploration can outperform exploitation in various synthetic and real-data
networks depending on the parameters of the network and the spread.
Related papers
- A Novel Explainable Out-of-Distribution Detection Approach for Spiking
Neural Networks [6.100274095771616]
This work presents a novel OoD detector that can identify whether test examples input to a Spiking Neural Network belong to the distribution of the data over which it was trained.
We characterize the internal activations of the hidden layers of the network in the form of spike count patterns.
A local explanation method is devised to produce attribution maps revealing which parts of the input instance push most towards the detection of an example as an OoD sample.
arXiv Detail & Related papers (2022-09-30T11:16:35Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - A Compact Deep Learning Model for Face Spoofing Detection [4.250231861415827]
presentation attack detection (PAD) has received significant attention from research communities.
We address the problem via fusing both wide and deep features in a unified neural architecture.
The procedure is done on different spoofing datasets such as ROSE-Youtu, SiW and NUAA Imposter.
arXiv Detail & Related papers (2021-01-12T21:20:09Z) - Whom to Test? Active Sampling Strategies for Managing COVID-19 [1.4610038284393163]
This paper presents methods to choose individuals to test for infection during a pandemic such as COVID-19.
The smart-testing ideas presented here are motivated by active learning and multi-armed bandit techniques in machine learning.
arXiv Detail & Related papers (2020-12-25T02:04:50Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z) - DNS Covert Channel Detection via Behavioral Analysis: a Machine Learning
Approach [0.09176056742068815]
We propose an effective covert channel detection method based on the analysis of DNS network data passively extracted from a network monitoring system.
The proposed solution has been evaluated over a 15-day-long experimental session with the injection of traffic that covers the most relevant exfiltration and tunneling attacks.
arXiv Detail & Related papers (2020-10-04T13:28:28Z) - Online neural connectivity estimation with ensemble stimulation [5.156484100374058]
We propose a method based on noisy group testing that drastically increases the efficiency of this process in sparse networks.
We show that it is possible to recover binarized network connectivity with a number of tests that grows only logarithmically with population size.
We also demonstrate the feasibility of inferring connectivity for networks of up to tens of thousands of neurons online.
arXiv Detail & Related papers (2020-07-27T23:47:03Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
We use mode connectivity to study the adversarial robustness of deep neural networks.
Our experiments cover various types of adversarial attacks applied to different network architectures and datasets.
Our results suggest that mode connectivity offers a holistic tool and practical means for evaluating and improving adversarial robustness.
arXiv Detail & Related papers (2020-04-30T19:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.