Intrinsic and Measured Information in Separable Quantum Processes
- URL: http://arxiv.org/abs/2303.00162v1
- Date: Wed, 1 Mar 2023 01:26:01 GMT
- Title: Intrinsic and Measured Information in Separable Quantum Processes
- Authors: David Gier and James P. Crutchfield
- Abstract summary: We introduce quantum-information-theoretic properties for separable qudit sequences.
We identify broad classes of separable processes based on their quantum information properties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stationary quantum information sources emit sequences of correlated qudits --
that is, structured quantum stochastic processes. If an observer performs
identical measurements on a qudit sequence, the outcomes are a realization of a
classical stochastic process. We introduce quantum-information-theoretic
properties for separable qudit sequences that serve as bounds on the classical
information properties of subsequent measured processes. For sources driven by
hidden Markov dynamics we describe how an observer can temporarily or
permanently synchronize to the source's internal state using specific positive
operator-valued measures or adaptive measurement protocols. We introduce a
method for approximating an information source with an independent and
identically-distributed, Markov, or larger memory model through tomographic
reconstruction. We identify broad classes of separable processes based on their
quantum information properties and the complexity of measurements required to
synchronize to and accurately reconstruct them.
Related papers
- Dissipation-induced Quantum Homogenization for Temporal Information Processing [44.99833362998488]
Quantum reservoirs have great potential as they utilize the complex real-time dissipative dynamics of quantum systems for information processing and target time-series generation without precise control or fine-tuning of the Hamiltonian parameters.
We propose the disordered quantum homogenizer as an alternative platform, and prove it satisfies the necessary and sufficient conditions - stability and contractivity - of the reservoir dynamics.
The results indicate that the quantum homogenization protocol, physically implementable as either nuclear magnetic resonance ensemble or a photonic system, can potentially function as a reservoir computer.
arXiv Detail & Related papers (2024-12-13T09:05:41Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Generalizing measurement-induced phase transitions to information exchange symmetry breaking [0.0]
Information dynamics is investigated using the R'enyi and von-Neumann entropies of the evolving state.
We show how the entanglement transition can be understood as the spontaneously breaking of the information exchange symmetry.
arXiv Detail & Related papers (2024-02-16T19:32:15Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Characterizing quantum pseudorandomness by machine learning [2.589904091148018]
We propose a method for verifying random dynamics from the data that is experimentally easy-to-access.
We use measurement probabilities estimated by a finite number of measurements of quantum states generated by a given random dynamics.
arXiv Detail & Related papers (2022-05-29T13:51:49Z) - Quantum information spreading in random spin chains with topological
order [0.0]
Tripartite mutual information (TMI) based on operator-based entanglement entropy (EE) is an efficient tool for measuring them.
We study random spin chains that exhibit phase transitions accompanying non-trivial change in topological properties.
Quench dynamics of the EE and TMI display interesting behaviors providing essential perspective concerning encoding of quantum information.
arXiv Detail & Related papers (2022-05-06T04:26:52Z) - Transfer Learning in Quantum Parametric Classifiers: An
Information-Theoretic Generalization Analysis [42.275148861039895]
A key step in quantum machine learning with classical inputs is the design of an embedding circuit mapping inputs to a quantum state.
This paper studies a transfer learning setting in which classical-to-quantum embedding is carried out by an arbitrary parametric quantum circuit.
arXiv Detail & Related papers (2022-01-17T09:28:13Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - A discrete memory-kernel for multi-time correlations in non-Markovian
quantum processes [0.0]
We show that the transfer-tensor method can be extended to processes which include multiple interrogations.
Our approach exploits the process-tensor description of open quantum processes to represent and propagate the dynamics.
arXiv Detail & Related papers (2020-07-07T07:00:34Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.