論文の概要: Modeling Multiple User Interests using Hierarchical Knowledge for
Conversational Recommender System
- arxiv url: http://arxiv.org/abs/2303.00311v1
- Date: Wed, 1 Mar 2023 08:15:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-02 15:33:25.260219
- Title: Modeling Multiple User Interests using Hierarchical Knowledge for
Conversational Recommender System
- Title(参考訳): 対話型レコメンダシステムにおける階層的知識を用いた複数ユーザ興味のモデル化
- Authors: Yuka Okuda, Katsuhito Sudoh, Seitaro Shinagawa, and Satoshi Nakamura
- Abstract要約: 会話レコメンデーションシステム(CRS)は,自然言語会話による項目レコメンデーションの実践的応用である。
我々は、CRSにおいてそのような複数のユーザ関心をモデル化することを提案する。
ReDial データセットを用いて実験を行った結果,提案手法はベースライン CR-Walker よりも幅広い項目を推奨できることがわかった。
- 参考スコア(独自算出の注目度): 13.545276171601769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A conversational recommender system (CRS) is a practical application for item
recommendation through natural language conversation. Such a system estimates
user interests for appropriate personalized recommendations. Users sometimes
have various interests in different categories or genres, but existing studies
assume a unique user interest that can be covered by closely related items. In
this work, we propose to model such multiple user interests in CRS. We
investigated its effects in experiments using the ReDial dataset and found that
the proposed method can recommend a wider variety of items than that of the
baseline CR-Walker.
- Abstract(参考訳): 会話レコメンデーションシステム(CRS)は,自然言語会話による項目レコメンデーションの実践的応用である。
このようなシステムは、適切なパーソナライズドレコメンデーションのためにユーザーの興味を推定する。
ユーザーはカテゴリやジャンルに様々な興味を持つことがあるが、既存の研究は、密接に関連する項目でカバーできるユニークなユーザーの興味を抱いている。
本研究では,CRSにおける複数のユーザ関心をモデル化することを提案する。
redialデータセットを用いた実験でその効果を検討した結果,提案手法ではベースラインcr-walkerよりも幅広い項目を推奨できることが判明した。
関連論文リスト
- When Search Meets Recommendation: Learning Disentangled Search
Representation for Recommendation [56.98380787425388]
シークエンシャルレコメンデーション(SESRec)のための検索強化フレームワークを提案する。
SESRec は、S&R の振る舞いにおいて類似および異種表現を分離する。
産業用と公共用両方のデータセットの実験では、SESRecが最先端のモデルより一貫して優れていることが示されている。
論文 参考訳(メタデータ) (2023-05-18T09:04:50Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
アイテム表現学習とユーザ嗜好モデリングの両方を改善するために,協調的拡張(COLA)手法を提案する。
すべての会話から対話型ユーザテムグラフを構築し,ユーザ認識情報によってアイテム表現を拡大する。
ユーザの嗜好モデルを改善するため,学習コーパスから類似した会話を検索し,ユーザの興味を反映した関連項目や属性を用いてユーザ表現を増強する。
論文 参考訳(メタデータ) (2022-12-15T12:37:28Z) - Hierarchical Conversational Preference Elicitation with Bandit Feedback [36.507341041113825]
提案システムでは,各ラウンドで推薦するキータームかアイテムのいずれかを選択することができる。
実世界のデータセットを調査・分析し、先行研究と異なり、キーターム報酬は主に代表品の報酬に影響されていることを確認する。
我々は、この観測結果とキータームとアイテム間の階層構造を利用する2つの帯域幅アルゴリズム、Hier-UCBとHier-LinUCBを提案する。
論文 参考訳(メタデータ) (2022-09-06T05:35:24Z) - Everyone's Preference Changes Differently: Weighted Multi-Interest
Retrieval Model [18.109035867113217]
MIPモデル(Multi-Interest Preference)は、ユーザのシーケンシャルエンゲージメントをより効果的に利用することで、ユーザにとってマルチエンゲージメントを生み出すアプローチである。
本手法の有効性を実証するため,様々な産業規模のデータセットを用いて大規模な実験を行った。
論文 参考訳(メタデータ) (2022-07-14T04:29:54Z) - Customized Conversational Recommender Systems [45.84713970070487]
会話レコメンデータシステム(CRS)は、ユーザの現在の意図を捉え、リアルタイムなマルチターン対話によるレコメンデーションを提供することを目的としている。
本稿では,3つの視点からCRSモデルをカスタマイズした新しいCRSモデルであるCustomized Conversational Recommender System(CCRS)を提案する。
パーソナライズされたレコメンデーションを提供するために,対話コンテキストからユーザの現在あるきめ細かい意図を,ユーザ固有の嗜好のガイダンスで抽出する。
論文 参考訳(メタデータ) (2022-06-30T09:45:36Z) - User-Centric Conversational Recommendation with Multi-Aspect User
Modeling [47.310579802092384]
CRSタスクにおけるユーザの嗜好学習の本質に回帰するユーザ中心会話推薦(UCCR)モデルを提案する。
複数視点の選好マッパーを用いて,現在および歴史的セッションにおける異なる視点の内在的相関を学習する。
学習したマルチアスペクトのマルチビューユーザ嗜好は、レコメンデーションと対話生成に使用される。
論文 参考訳(メタデータ) (2022-04-20T07:08:46Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
コールドスタートユーザに対しては,属性を問うと同時に,ユーザに対して対話的に商品を推薦する,対話型レコメンデーションを提案する。
会話型トンプソンサンプリング(ConTS)モデルでは,最大報酬の腕を選択することで,対話型レコメンデーションにおけるすべての質問を一意に解決する。
論文 参考訳(メタデータ) (2020-05-23T08:56:37Z) - A Survey on Conversational Recommender Systems [11.319431345375751]
会話レコメンデータシステム(CRS)は異なるアプローチを採用し、よりリッチなインタラクションをサポートする。
CRSに対する関心は、ここ数年で大幅に増加した。
この開発は主に自然言語処理の分野における著しい進歩によるものである。
論文 参考訳(メタデータ) (2020-04-01T18:00:47Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
ベイズ的アプローチに基づく会話推薦システムを提案する。
エンターテイナーを予約するオンラインプラットフォームであるemphstagend.comへのこのアプローチの適用に基づくケーススタディについて論じる。
論文 参考訳(メタデータ) (2020-02-12T15:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。