A Framework for Neurosymbolic Robot Action Planning using Large Language Models
- URL: http://arxiv.org/abs/2303.00438v3
- Date: Tue, 4 Jun 2024 12:03:28 GMT
- Title: A Framework for Neurosymbolic Robot Action Planning using Large Language Models
- Authors: Alessio Capitanelli, Fulvio Mastrogiovanni,
- Abstract summary: We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
- Score: 3.0501524254444767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symbolic task planning is a widely used approach to enforce robot autonomy due to its ease of understanding and deployment in robot architectures. However, techniques for symbolic task planning are difficult to scale in real-world, human-robot collaboration scenarios because of the poor performance in complex planning domains or when frequent re-planning is needed. We present a framework, Teriyaki, specifically aimed at bridging the gap between symbolic task planning and machine learning approaches. The rationale is training Large Language Models (LLMs), namely GPT-3, into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL), and then leveraging its generative capabilities to overcome a number of limitations inherent to symbolic task planners. Potential benefits include (i) a better scalability in so far as the planning domain complexity increases, since LLMs' response time linearly scales with the combined length of the input and the output, and (ii) the ability to synthesize a plan action-by-action instead of end-to-end, making each action available for execution as soon as it is generated instead of waiting for the whole plan to be available, which in turn enables concurrent planning and execution. Recently, significant efforts have been devoted by the research community to evaluate the cognitive capabilities of LLMs, with alternate successes. Instead, with Teriyaki we aim to provide an overall planning performance comparable to traditional planners in specific planning domains, while leveraging LLMs capabilities to build a look-ahead predictive planning model. Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%
Related papers
- Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - LASP: Surveying the State-of-the-Art in Large Language Model-Assisted AI Planning [7.36760703426119]
This survey aims to highlight the existing challenges in planning with language models.
It focuses on key areas such as embodied environments, optimal scheduling, competitive and cooperative games, task decomposition, reasoning, and planning.
arXiv Detail & Related papers (2024-09-03T11:39:52Z) - PDDLEGO: Iterative Planning in Textual Environments [56.12148805913657]
Planning in textual environments has been shown to be a long-standing challenge even for current models.
We propose PDDLEGO that iteratively construct a planning representation that can lead to a partial plan for a given sub-goal.
We show that plans produced by few-shot PDDLEGO are 43% more efficient than generating plans end-to-end on the Coin Collector simulation.
arXiv Detail & Related papers (2024-05-30T08:01:20Z) - DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models [5.385540718118656]
We introduce DELTA, a novel task planning approach based on Large Language Models (LLMs)
By using scene graphs as environment representations within LLMs, DELTA achieves rapid generation of precise planning problem descriptions.
We show that DELTA enables an efficient and fully automatic task planning pipeline, achieving higher planning success rates and significantly shorter planning times compared to the state of the art.
arXiv Detail & Related papers (2024-04-04T07:59:24Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
The inherent probabilistic nature of Large Language Models (LLMs) introduces an element of unpredictability.
This paper introduces an innovative approach aims to generate correct and optimal robotic task plans for diverse real-world demands and scenarios.
arXiv Detail & Related papers (2024-01-15T18:01:59Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - A Planning Ontology to Represent and Exploit Planning Knowledge for Performance Efficiency [6.87593454486392]
We consider the problem of automated planning, where the objective is to find a sequence of actions that will move an agent from an initial state of the world to a desired goal state.
We hypothesize that given a large number of available planners and diverse planning domains; they carry essential information that can be leveraged to identify suitable planners and improve their performance for a domain.
arXiv Detail & Related papers (2023-07-25T14:51:07Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Learning to Reason over Scene Graphs: A Case Study of Finetuning GPT-2
into a Robot Language Model for Grounded Task Planning [45.51792981370957]
We investigate the applicability of a smaller class of large language models (LLMs) in robotic task planning by learning to decompose tasks into subgoal specifications for a planner to execute sequentially.
Our method grounds the input of the LLM on the domain that is represented as a scene graph, enabling it to translate human requests into executable robot plans.
Our findings suggest that the knowledge stored in an LLM can be effectively grounded to perform long-horizon task planning, demonstrating the promising potential for the future application of neuro-symbolic planning methods in robotics.
arXiv Detail & Related papers (2023-05-12T18:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.