論文の概要: Succinct Representations for Concepts
- arxiv url: http://arxiv.org/abs/2303.00446v1
- Date: Wed, 1 Mar 2023 12:11:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-02 14:56:46.789247
- Title: Succinct Representations for Concepts
- Title(参考訳): 概念の接頭辞表現
- Authors: Yang Yuan
- Abstract要約: chatGPTのようなファンデーションモデルは、様々なタスクで顕著なパフォーマンスを示している。
しかし、多くの疑問に対して、彼らは正確なように見える誤った答えを生み出すかもしれない。
本稿では,圏論に基づく概念の簡潔な表現について述べる。
- 参考スコア(独自算出の注目度): 12.134564449202708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models like chatGPT have demonstrated remarkable performance on
various tasks. However, for many questions, they may produce false answers that
look accurate. How do we train the model to precisely understand the concepts?
In this paper, we introduce succinct representations of concepts based on
category theory. Such representation yields concept-wise invariance properties
under various tasks, resulting a new learning algorithm that can provably and
accurately learn complex concepts or fix misconceptions. Moreover, by
recursively expanding the succinct representations, one can generate a
hierarchical decomposition, and manually verify the concept by individually
examining each part inside the decomposition.
- Abstract(参考訳): chatGPTのようなファンデーションモデルは、様々なタスクで顕著なパフォーマンスを示している。
しかし、多くの質問に対して、それらは正確に見える誤った答えを生み出すかもしれない。
コンセプトを正確に理解するために、どのようにモデルをトレーニングするか?
本稿では,圏論に基づく概念の簡潔な表現について述べる。
このような表現は、様々なタスクの下で概念的な不変性をもたらし、新しい学習アルゴリズムは、複雑な概念を明確かつ正確に学習し、誤解を修正できる。
また、簡潔表現を再帰的に拡大することにより、階層的分解を生成し、分解内の各部分を個別に検証して、手動で概念を検証することができる。
関連論文リスト
- Explaining Explainability: Understanding Concept Activation Vectors [35.37586279472797]
最近の解釈可能性法では、概念に基づく説明を用いて、ディープラーニングモデルの内部表現を、人間が慣れ親しんだ言語に翻訳する。
これは、ニューラルネットワークの表現空間にどの概念が存在するかを理解する必要がある。
本研究では,概念活性化ベクトル(Concept Activation Vectors, CAV)の3つの特性について検討する。
本研究では,これらの特性の存在を検出するためのツールを導入し,それらが引き起こした説明にどのように影響するかを把握し,その影響を最小限に抑えるための推奨事項を提供する。
論文 参考訳(メタデータ) (2024-04-04T17:46:20Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Automatic Concept Extraction for Concept Bottleneck-based Video
Classification [58.11884357803544]
本稿では,概念に基づくビデオ分類に必要かつ十分な概念抽象セットを厳格に構成する概念発見抽出モジュールを提案する。
提案手法は,自然言語における概念概念の抽象概念を応用し,複雑なタスクに概念ボトルネック法を一般化する。
論文 参考訳(メタデータ) (2022-06-21T06:22:35Z) - Visual Superordinate Abstraction for Robust Concept Learning [80.15940996821541]
概念学習は言語意味論と結びついた視覚表現を構成する。
視覚概念の本質的な意味的階層を探索する失敗のボトルネックについて説明する。
本稿では,意味認識型視覚サブ空間を明示的にモデル化するビジュアル・スーパーオーディネート・抽象化・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-28T14:27:38Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z) - Separating Skills and Concepts for Novel Visual Question Answering [66.46070380927372]
アウト・オブ・ディストリビューションデータへの一般化は、VQA(Visual Question Answering)モデルにおいて問題となっている。
「スキル」とは、数え方や属性認識などの視覚的なタスクであり、その疑問に言及された「概念」に適用される。
モデル内でこれらの2つの要因を暗黙的に分離するスキルと概念を学習するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-07-19T18:55:10Z) - Flexible Compositional Learning of Structured Visual Concepts [17.665938343060112]
本研究では,豊かな関係構造を持つ抽象的な視覚形態を用いて,異なるタイプの視覚構成を学習する方法について検討する。
さまざまなシナリオで、ほんの数例から意味のある構成の一般化ができることが分かりました。
構成性の特別な場合を調べる過去の研究とは異なり、我々の研究は、単一の計算アプローチが多くの異なる種類の構成一般化を考慮できることを示す。
論文 参考訳(メタデータ) (2021-05-20T15:48:05Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
我々は,機械が一般化可能な概念を学習する能力を調べるため,新しいデータセットであるHINT(Hand written arithmetic with INTegers)を提案する。
HINTでは、イメージなどの生信号から概念がどのように認識されるかを学ぶことが機械のタスクである。
我々は、RNN、Transformer、GPT-3など、様々なシーケンス・ツー・シーケンスモデルで広範囲に実験を行った。
論文 参考訳(メタデータ) (2021-03-02T01:32:54Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。