論文の概要: CoLiDR: Concept Learning using Aggregated Disentangled Representations
- arxiv url: http://arxiv.org/abs/2407.19300v1
- Date: Sat, 27 Jul 2024 16:55:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:51:52.311840
- Title: CoLiDR: Concept Learning using Aggregated Disentangled Representations
- Title(参考訳): CoLiDR: Aggregated Disentangled Representation を用いた概念学習
- Authors: Sanchit Sinha, Guangzhi Xiong, Aidong Zhang,
- Abstract要約: 概念に基づくモデルを用いたディープニューラルネットワークの解釈可能性は、人間の理解可能な概念を通じてモデルの振る舞いを説明する有望な方法を提供する。
並列的な研究は、データ分散をその基盤となる生成因子に切り離し、データ生成プロセスを説明することに重点を置いている。
どちらの方向も広く注目されているが、数学的に不整合な表現と人間の理解可能な概念を統一するための生成的要因の観点から概念を説明する研究はほとんど行われていない。
- 参考スコア(独自算出の注目度): 29.932706137805713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability of Deep Neural Networks using concept-based models offers a promising way to explain model behavior through human-understandable concepts. A parallel line of research focuses on disentangling the data distribution into its underlying generative factors, in turn explaining the data generation process. While both directions have received extensive attention, little work has been done on explaining concepts in terms of generative factors to unify mathematically disentangled representations and human-understandable concepts as an explanation for downstream tasks. In this paper, we propose a novel method CoLiDR - which utilizes a disentangled representation learning setup for learning mutually independent generative factors and subsequently learns to aggregate the said representations into human-understandable concepts using a novel aggregation/decomposition module. Experiments are conducted on datasets with both known and unknown latent generative factors. Our method successfully aggregates disentangled generative factors into concepts while maintaining parity with state-of-the-art concept-based approaches. Quantitative and visual analysis of the learned aggregation procedure demonstrates the advantages of our work compared to commonly used concept-based models over four challenging datasets. Lastly, our work is generalizable to an arbitrary number of concepts and generative factors - making it flexible enough to be suitable for various types of data.
- Abstract(参考訳): 概念に基づくモデルを用いたディープニューラルネットワークの解釈可能性は、人間の理解可能な概念を通じてモデルの振る舞いを説明する有望な方法を提供する。
並列的な研究は、データ分散をその基盤となる生成因子に切り離し、データ生成プロセスを説明することに重点を置いている。
両方向とも注目されているが、下流タスクの説明として、数学的に不整合な表現と人間の理解可能な概念を統一するための生成的要素の観点から概念を説明することは、ほとんど行われていない。
本稿では, 互いに独立な生成因子を学習するために, 絡み合った表現学習機構を利用したCoLiDRを提案する。
未知の潜在的生成因子と未知の潜在的生成因子の両方を持つデータセット上で実験を行う。
提案手法は, 最先端のコンセプトベースアプローチと同等性を保ちながら, 絡み合った生成因子を概念に集約する。
学習したアグリゲーション手順の定量的および視覚的分析は、4つの挑戦的データセット上でよく使用される概念ベースモデルと比較して、我々の作業の利点を示している。
最後に、我々の仕事は任意の数の概念と生成要因に一般化できます。
関連論文リスト
- Structural Causality-based Generalizable Concept Discovery Models [29.932706137805713]
本稿では,変動オートエンコーダ(VAE)を用いて,与えられたデータセットに対して相互独立な生成因子を学習するためのアンタングル機構を提案する。
本手法は,生成因子から概念への因果関係を指向した2部グラフを形成するために生成因子と概念を仮定する。
提案手法は, 特定の下流タスクにおいて, 因果的要因からよく説明されるタスク固有の概念をうまく学習する。
論文 参考訳(メタデータ) (2024-10-20T20:09:47Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Learning Interpretable Concepts: Unifying Causal Representation Learning
and Foundation Models [51.43538150982291]
人間の解釈可能な概念をデータから学習する方法を研究する。
両分野からアイデアをまとめ、多様なデータから概念を確実に回収できることを示す。
論文 参考訳(メタデータ) (2024-02-14T15:23:59Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - Understanding Distributed Representations of Concepts in Deep Neural
Networks without Supervision [25.449397570387802]
本稿では,ニューロンの主部分集合を選択することによって,概念の分散表現を発見する教師なし手法を提案する。
我々の経験から、類似のニューロン活性化状態のインスタンスはコヒーレントな概念を共有する傾向があることが示されている。
データ内のラベルなしサブクラスを特定し、誤分類の原因を検出するために利用することができる。
論文 参考訳(メタデータ) (2023-12-28T07:33:51Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Uncovering Unique Concept Vectors through Latent Space Decomposition [0.0]
概念に基づく説明は、特徴帰属推定よりも解釈可能な優れたアプローチとして現れてきた。
本稿では,訓練中に深層モデルから学んだ概念を自動的に発見するポストホックな教師なし手法を提案する。
実験の結果、我々の概念の大部分は、人間にとって容易に理解でき、一貫性を示し、目の前の課題に関連があることが判明した。
論文 参考訳(メタデータ) (2023-07-13T17:21:54Z) - Concept-Based Explanations for Tabular Data [0.0]
ディープニューラルネットワーク(DNN)のための概念に基づく説明可能性を提案する。
本研究では,人間レベルの直観に合致する解釈可能性を示す手法の有効性を示す。
また,DNNのどの層がどの層を学習したのかを定量化したTCAVに基づく公平性の概念を提案する。
論文 参考訳(メタデータ) (2022-09-13T02:19:29Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。