Succinct Representations for Concepts
- URL: http://arxiv.org/abs/2303.00446v1
- Date: Wed, 1 Mar 2023 12:11:23 GMT
- Title: Succinct Representations for Concepts
- Authors: Yang Yuan
- Abstract summary: Foundation models like chatGPT have demonstrated remarkable performance on various tasks.
However, for many questions, they may produce false answers that look accurate.
In this paper, we introduce succinct representations of concepts based on category theory.
- Score: 12.134564449202708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models like chatGPT have demonstrated remarkable performance on
various tasks. However, for many questions, they may produce false answers that
look accurate. How do we train the model to precisely understand the concepts?
In this paper, we introduce succinct representations of concepts based on
category theory. Such representation yields concept-wise invariance properties
under various tasks, resulting a new learning algorithm that can provably and
accurately learn complex concepts or fix misconceptions. Moreover, by
recursively expanding the succinct representations, one can generate a
hierarchical decomposition, and manually verify the concept by individually
examining each part inside the decomposition.
Related papers
- CoLiDR: Concept Learning using Aggregated Disentangled Representations [29.932706137805713]
Interpretability of Deep Neural Networks using concept-based models offers a promising way to explain model behavior through human-understandable concepts.
A parallel line of research focuses on disentangling the data distribution into its underlying generative factors, in turn explaining the data generation process.
While both directions have received extensive attention, little work has been done on explaining concepts in terms of generative factors to unify mathematically disentangled representations and human-understandable concepts.
arXiv Detail & Related papers (2024-07-27T16:55:14Z) - Explaining Explainability: Understanding Concept Activation Vectors [35.37586279472797]
Recent interpretability methods propose using concept-based explanations to translate internal representations of deep learning models into a language that humans are familiar with: concepts.
This requires understanding which concepts are present in the representation space of a neural network.
In this work, we investigate three properties of Concept Activation Vectors (CAVs), which are learnt using a probe dataset of concept exemplars.
We introduce tools designed to detect the presence of these properties, provide insight into how they affect the derived explanations, and provide recommendations to minimise their impact.
arXiv Detail & Related papers (2024-04-04T17:46:20Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Automatic Concept Extraction for Concept Bottleneck-based Video
Classification [58.11884357803544]
We present an automatic Concept Discovery and Extraction module that rigorously composes a necessary and sufficient set of concept abstractions for concept-based video classification.
Our method elicits inherent complex concept abstractions in natural language to generalize concept-bottleneck methods to complex tasks.
arXiv Detail & Related papers (2022-06-21T06:22:35Z) - Visual Superordinate Abstraction for Robust Concept Learning [80.15940996821541]
Concept learning constructs visual representations that are connected to linguistic semantics.
We ascribe the bottleneck to a failure of exploring the intrinsic semantic hierarchy of visual concepts.
We propose a visual superordinate abstraction framework for explicitly modeling semantic-aware visual subspaces.
arXiv Detail & Related papers (2022-05-28T14:27:38Z) - Separating Skills and Concepts for Novel Visual Question Answering [66.46070380927372]
Generalization to out-of-distribution data has been a problem for Visual Question Answering (VQA) models.
"Skills" are visual tasks, such as counting or attribute recognition, and are applied to "concepts" mentioned in the question.
We present a novel method for learning to compose skills and concepts that separates these two factors implicitly within a model.
arXiv Detail & Related papers (2021-07-19T18:55:10Z) - Flexible Compositional Learning of Structured Visual Concepts [17.665938343060112]
We study how people learn different types of visual compositions, using abstract visual forms with rich relational structure.
We find that people can make meaningful compositional generalizations from just a few examples in a variety of scenarios.
Unlike past work examining special cases of compositionality, our work shows how a single computational approach can account for many distinct types of compositional generalization.
arXiv Detail & Related papers (2021-05-20T15:48:05Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
We present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines' capability of learning generalizable concepts.
In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images.
We undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3.
arXiv Detail & Related papers (2021-03-02T01:32:54Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.