論文の概要: Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
- arxiv url: http://arxiv.org/abs/2303.00609v3
- Date: Sat, 29 Jul 2023 15:21:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 23:25:08.817061
- Title: Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
- Title(参考訳): 教師なしの病理検出: 最先端技術への深入り
- Authors: Ioannis Lagogiannis, Felix Meissen, Georgios Kaissis and Daniel
Rueckert
- Abstract要約: 複数の医療データセット上で,最先端の非教師付き異常検出法 (UAD) の選択について検討した。
本実験は, 産業・医療文献から新たに開発された特徴モデリング手法により, 性能が向上することが実証された。
これらの手法は,最近開発された自己教師付き事前学習アルゴリズムの恩恵を受けることができることを示す。
- 参考スコア(独自算出の注目度): 6.667150890634173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep unsupervised approaches are gathering increased attention for
applications such as pathology detection and segmentation in medical images
since they promise to alleviate the need for large labeled datasets and are
more generalizable than their supervised counterparts in detecting any kind of
rare pathology. As the Unsupervised Anomaly Detection (UAD) literature
continuously grows and new paradigms emerge, it is vital to continuously
evaluate and benchmark new methods in a common framework, in order to reassess
the state-of-the-art (SOTA) and identify promising research directions. To this
end, we evaluate a diverse selection of cutting-edge UAD methods on multiple
medical datasets, comparing them against the established SOTA in UAD for brain
MRI. Our experiments demonstrate that newly developed feature-modeling methods
from the industrial and medical literature achieve increased performance
compared to previous work and set the new SOTA in a variety of modalities and
datasets. Additionally, we show that such methods are capable of benefiting
from recently developed self-supervised pre-training algorithms, further
increasing their performance. Finally, we perform a series of experiments in
order to gain further insights into some unique characteristics of selected
models and datasets. Our code can be found under
https://github.com/iolag/UPD_study/.
- Abstract(参考訳): 深い教師なしのアプローチは、大きなラベル付きデータセットの必要性を軽減し、どんな稀な病理も検出できるような教師付きアプローチよりも一般化可能であることを約束するため、医学画像の病理検出やセグメンテーションなどの応用に注目が集まっている。
非教師なし異常検出(UAD)の文献が継続的に増加し,新たなパラダイムが出現するにつれ,SOTA(State-of-the-art)を再評価し,将来的な研究方向性を特定するために,新たな手法を共通のフレームワークで継続的に評価し,ベンチマークすることが不可欠である。
そこで我々は,複数の医学的データセット上での最先端のUAD法の選択を多種多様に評価し,脳MRIにおいて確立されたSOTAと比較した。
本実験により, 産業・医学文献から新たに開発された特徴モデリング手法は, 従来に比べて性能が向上し, 様々なモダリティやデータセットに新たなSOTAを設定できることが実証された。
さらに,このような手法は,最近開発された自己教師付き事前学習アルゴリズムの恩恵を受けることができることを示す。
最後に,選択したモデルとデータセットのユニークな特徴についてさらなる洞察を得るために,一連の実験を行う。
コードはhttps://github.com/iolag/upd_study/で確認できます。
関連論文リスト
- A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - ADer: A Comprehensive Benchmark for Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい異常検出手法のモジュラーフレームワークであるtextbftextitADerを提案する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Automated Radiology Report Generation: A Review of Recent Advances [5.965255286239531]
人工知能の最近の技術進歩は、自動放射線学レポート生成に大きな可能性を示している。
人工知能の最近の進歩は、自動放射線診断レポート生成に大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-17T15:06:08Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
異常検出(AD)は、しばしば産業品質検査や医学的病変検査のための異常の検出に焦点が当てられている。
この研究はまず、COCOをADフィールドに拡張することにより、大規模で汎用的なCOCO-ADデータセットを構築する。
セグメンテーション分野のメトリクスにインスパイアされた我々は、より実用的なしきい値に依存したAD固有のメトリクスをいくつか提案する。
論文 参考訳(メタデータ) (2024-04-16T17:38:26Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
脳MRI領域分割における堅牢な領域適応のための教師なし手法を提案する。
その結果,提案手法は高い精度を実現し,幅広い適用性を示し,各種タスクにおけるドメインシフトに対する顕著な堅牢性を示した。
論文 参考訳(メタデータ) (2023-08-08T17:00:11Z) - Federated Learning with Research Prototypes for Multi-Center MRI-based
Detection of Prostate Cancer with Diverse Histopathology [3.8613414331251423]
前立腺癌検出アルゴリズムのクロスサイトトレーニング,検証,評価のためのフレキシブル・フェデレート・ラーニング・フレームワークを提案する。
前立腺癌の検出と分類の精度は,神経回路モデルと多種多様な前立腺生検データを用いて向上した。
我々はFLtoolsシステムをオープンソースとして公開し、医療画像のための他のディープラーニングプロジェクトに容易に対応できるようにしています。
論文 参考訳(メタデータ) (2022-06-11T21:28:17Z) - Multi-objective optimization determines when, which and how to fuse deep
networks: an application to predict COVID-19 outcomes [1.8351254916713304]
マルチモーダル・エンド・ツー・エンドモデルのセットアップを最適化する新しい手法を提案する。
我々はAIforCOVIDデータセット上でテストを行い、最先端の結果を得た。
論文 参考訳(メタデータ) (2022-04-07T23:07:33Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A
Comparative Study [43.26668942258135]
脳MRIにおけるunsupervised Anomaly Detection(UAD)の新しいアプローチ
これらの研究の主な原理は、正常なデータの圧縮と回復を学ぶことによって、正常な解剖学のモデルを学ぶことである。
概念は,医療画像分析のコミュニティにとって大きな関心事である。i) 膨大な量の手作業によるトレーニングデータの必要性から解放される。
論文 参考訳(メタデータ) (2020-04-07T11:12:07Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。