論文の概要: The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology
- arxiv url: http://arxiv.org/abs/2409.12973v1
- Date: Tue, 3 Sep 2024 00:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:36:59.674442
- Title: The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology
- Title(参考訳): 医用画像の基礎モデルの時代が近づきつつある : 放射線学における大規模生成AI応用の臨床的価値のスコーピングレビュー
- Authors: Inwoo Seo, Eunkyoung Bae, Joo-Young Jeon, Young-Sang Yoon, Jiho Cha,
- Abstract要約: 放射線技師の不足に起因する社会問題は激化しており、人工知能は潜在的な解決策として強調されている。
最近出現する大規模生成AIは、大規模言語モデル(LLM)からマルチモーダルモデルへと拡張されている。
このスコーピングレビューは、大規模生成型AIアプリケーションの臨床的価値に関する既存の文献を体系的に整理する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social problems stemming from the shortage of radiologists are intensifying, and artificial intelligence is being highlighted as a potential solution. Recently emerging large-scale generative AI has expanded from large language models (LLMs) to multi-modal models, showing potential to revolutionize the entire process of medical imaging. However, comprehensive reviews on their development status and future challenges are currently lacking. This scoping review systematically organizes existing literature on the clinical value of large-scale generative AI applications by following PCC guidelines. A systematic search was conducted across four databases: PubMed, EMbase, IEEE-Xplore, and Google Scholar, and 15 studies meeting the inclusion/exclusion criteria set by the researchers were reviewed. Most of these studies focused on improving the efficiency of report generation in specific parts of the interpretation process or on translating reports to aid patient understanding, with the latest studies extending to AI applications performing direct interpretations. All studies were quantitatively evaluated by clinicians, with most utilizing LLMs and only three employing multi-modal models. Both LLMs and multi-modal models showed excellent results in specific areas, but none yet outperformed radiologists in diagnostic performance. Most studies utilized GPT, with few using models specialized for the medical imaging domain. This study provides insights into the current state and limitations of large-scale generative AI-based applications in the medical imaging field, offering foundational data and suggesting that the era of medical imaging foundation models is on the horizon, which may fundamentally transform clinical practice in the near future.
- Abstract(参考訳): 放射線技師の不足に起因する社会問題は激化しており、人工知能は潜在的な解決策として強調されている。
最近出現する大規模生成AIは、大規模言語モデル(LLM)からマルチモーダルモデルへと拡張され、医療画像の全プロセスに革命をもたらす可能性がある。
しかしながら、彼らの開発状況と今後の課題に関する包括的なレビューは、現在不足している。
このスコーピングレビューは,PCCガイドラインに従うことで,大規模生成型AIアプリケーションの臨床的価値に関する既存の文献を体系的に整理する。
PubMed、EMbase、IEEE-Xplore、Google Scholarの4つのデータベースで体系的な検索が行われ、研究者が設定した包括的・排他的基準を満たす15の研究がレビューされた。
これらの研究の多くは、解釈プロセスの特定の部分におけるレポート生成の効率の改善や、患者の理解を助けるためにレポートを翻訳することに焦点を当て、最新の研究は直接解釈を行うAIアプリケーションにまで拡張された。
全ての研究は臨床医によって定量的に評価され、そのほとんどはLSMを使用し、マルチモーダルモデルを採用しているのはわずか3つだけだった。
LLM, マルチモーダルモデルともに, 特定の領域において優れた成績を示したが, 診断成績に優れた成績は得られなかった。
ほとんどの研究はGPTを利用しており、医療画像領域に特化したモデルはほとんど使われていない。
本研究は、医用画像分野における大規模生成AIベースの応用の現状と限界に関する知見を提供し、基礎データを提供し、医用画像基盤モデルの時代が地平線上にあることを示唆し、近い将来、臨床実践を根本的に変える可能性がある。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - MiniGPT-Med: Large Language Model as a General Interface for Radiology Diagnosis [28.421857904824627]
MiniGPT-Medは、大規模言語モデルから派生したヴィジュアル言語モデルであり、医学的応用に適したものである。
医療報告生成、視覚的質問応答(VQA)、医療画像内の疾患識別などのタスクを実行することができる。
医療報告生成の最先端性能は,従来の最良モデルよりも19%高い精度で達成される。
論文 参考訳(メタデータ) (2024-07-04T18:21:10Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
本稿では,様々な医療データ型を合成するための生成モデルについて,体系的に検討する。
本研究は、幅広い医療データモダリティを包含し、様々な生成モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-27T14:00:11Z) - Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning [33.9544297423474]
873kの胸部X線で自己監督によって訓練された大型ビジュアルエンコーダであるRayDinoについて紹介する。
我々はレイディーノと過去の9つの放射線学課題における最先端モデルを比較し、分類と密分化からテキスト生成までについて述べる。
以上の結果から,患者中心型AIがX線の臨床・解釈に有用であることが示唆された。
論文 参考訳(メタデータ) (2024-05-02T16:59:10Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - Towards Generalist Biomedical AI [28.68106423175678]
我々は,汎用バイオメディカルAIシステムの概念実証であるMed-PaLM Multimodal(Med-PaLM M)を紹介する。
Med-PaLM Mは、バイオメディカルデータを柔軟にエンコードし解釈する大規模なマルチモーダル生成モデルである。
モデル生成(およびヒト)胸部X線検査の放射線学的評価を行い, モデルスケールでの性能向上を観察した。
論文 参考訳(メタデータ) (2023-07-26T17:52:22Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
大規模人工知能(AGI)モデルは、様々な汎用ドメインタスクにおいて前例のない成功を収めた。
これらのモデルは、医学分野固有の複雑さとユニークな特徴から生じる顕著な課題に直面している。
このレビューは、医療画像、医療などにおけるAGIの将来的な意味についての洞察を提供することを目的としている。
論文 参考訳(メタデータ) (2023-06-08T18:04:13Z) - Artificial Intelligence-Based Methods for Fusion of Electronic Health
Records and Imaging Data [0.9749560288448113]
我々は、AI技術を用いて、異なる臨床応用のためにマルチモーダル医療データを融合する文献の合成と分析に重点を置いている。
本報告では, 各種核融合戦略, マルチモーダル核融合を用いた疾患, 臨床成績, 利用可能なマルチモーダル医療データセットを包括的に分析する。
論文 参考訳(メタデータ) (2022-10-23T07:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。