Robustness of quantum algorithms against coherent control errors
- URL: http://arxiv.org/abs/2303.00618v2
- Date: Wed, 8 Nov 2023 10:57:59 GMT
- Title: Robustness of quantum algorithms against coherent control errors
- Authors: Julian Berberich, Daniel Fink, and Christian Holm
- Abstract summary: We present a framework for analyzing the robustness of quantum algorithms against coherent control errors using Lipschitz bounds.
We derive worst-case fidelity bounds which show that the resilience against coherent control errors is mainly influenced by the norms of the Hamiltonians generating the individual gates.
- Score: 0.5407319151576265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherent control errors, for which ideal Hamiltonians are perturbed by
unknown multiplicative noise terms, are a major obstacle for reliable quantum
computing. In this paper, we present a framework for analyzing the robustness
of quantum algorithms against coherent control errors using Lipschitz bounds.
We derive worst-case fidelity bounds which show that the resilience against
coherent control errors is mainly influenced by the norms of the Hamiltonians
generating the individual gates. These bounds are explicitly computable even
for large circuits, and they can be used to guarantee fault-tolerance via
threshold theorems. Moreover, we apply our theoretical framework to derive a
novel guideline for robust quantum algorithm design and transpilation, which
amounts to reducing the norms of the Hamiltonians. Using the $3$-qubit Quantum
Fourier Transform as an example application, we demonstrate that this guideline
targets robustness more effectively than existing ones based on circuit depth
or gate count. Furthermore, we apply our framework to study the effect of
parameter regularization in variational quantum algorithms. The practicality of
the theoretical results is demonstrated via implementations in simulation and
on a quantum computer.
Related papers
- Robustness of optimal quantum annealing protocols [0.0]
We show that the norm of the Hamiltonian quantifies the robustness against these errors, motivating the introduction of an additional regularization term in the cost function.
We analyze the optimality conditions of the resulting robust quantum optimal control problem based on Pontryagin's maximum principle.
arXiv Detail & Related papers (2024-08-13T10:10:56Z) - Tailoring Fault-Tolerance to Quantum Algorithms [3.836669717540222]
We develop a solve-and-stitch algorithm to synthesize physical realizations of Clifford Trotter circuits.
We achieve fault-tolerance for these circuits using flag gadgets, which add minimal overhead.
arXiv Detail & Related papers (2024-04-18T07:15:15Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Error-Tolerant Geometric Quantum Control for Logical Qubits with Minimal
Resource [4.354697470999286]
We propose a new fast and robust geometric scheme, with the decoherence-free-subspace encoding, and present its physical implementation on superconducting quantum circuits.
Our scheme can consolidate both error suppression methods for logical-qubit control, which sheds light on the future large-scale quantum computation.
arXiv Detail & Related papers (2021-12-16T12:10:41Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.