Error-Tolerant Geometric Quantum Control for Logical Qubits with Minimal
Resource
- URL: http://arxiv.org/abs/2112.08823v1
- Date: Thu, 16 Dec 2021 12:10:41 GMT
- Title: Error-Tolerant Geometric Quantum Control for Logical Qubits with Minimal
Resource
- Authors: Tao Chen, Zheng-Yuan Xue, and Z. D. Wang
- Abstract summary: We propose a new fast and robust geometric scheme, with the decoherence-free-subspace encoding, and present its physical implementation on superconducting quantum circuits.
Our scheme can consolidate both error suppression methods for logical-qubit control, which sheds light on the future large-scale quantum computation.
- Score: 4.354697470999286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric quantum computation offers a practical strategy toward robust
quantum computation due to its inherently error tolerance. However, the
rigorous geometric conditions lead to complex and/or error-disturbed quantum
controls, especially for logical qubits that involve more physical qubits,
whose error tolerance is effective in principle though, their experimental
demonstration is still demanding. Thus, how to best simplify the needed control
and manifest its full advantage has become the key to widespread applications
of geometric quantum computation. Here we propose a new fast and robust
geometric scheme, with the decoherence-free-subspace encoding, and present its
physical implementation on superconducting quantum circuits, where we only
utilize the experimentally demonstrated parametrically tunable coupling to
achieve high-fidelity geometric control over logical qubits. Numerical
simulation verifies that it can efficiently combine the error tolerance from
both the geometric phase and logical-qubit encoding, displaying our
gate-performance superiority over the conventional dynamical one without
encoding, in terms of both gate fidelity and robustness. Therefore, our scheme
can consolidate both error suppression methods for logical-qubit control, which
sheds light on the future large-scale quantum computation.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Dynamical-Corrected Nonadiabatic Geometric Quantum Computation [9.941657239723108]
We present an effective geometric scheme combined with a general dynamical-corrected technique.
Our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-02-08T16:18:09Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Experimental implementation of universal holonomic quantum computation
on solid-state spins with optimal control [12.170408456188934]
We experimentally implement nonadiabatic holonomic quantum computation with solid spins in diamond at room-temperature.
Compared with previous geometric methods, the fidelities of a universal set of holonomic single-qubit and two-qubit quantum logic gates are improved.
This work makes an important step towards fault-tolerant scalable geometric quantum computation in realistic systems.
arXiv Detail & Related papers (2021-02-18T09:02:02Z) - Relaxation times do not capture logical qubit dynamics [50.04886706729045]
We show that spatial noise correlations can give rise to rich and counter-intuitive dynamical behavior of logical qubits.
This work will help to guide and benchmark experimental implementations of logical qubits.
arXiv Detail & Related papers (2020-12-14T19:51:19Z) - Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits [4.354697470999286]
We propose a simplified implementation of universal holonomic quantum gates on superconducting circuits.
Our scheme is more robust than the conventional ones, and thus provides a promising alternative strategy for scalable fault-tolerant quantum computation.
arXiv Detail & Related papers (2020-04-23T13:26:18Z) - High-fidelity and Robust Geometric Quantum Gates that Outperform
Dynamical Ones [5.781900408390438]
We propose a general framework of geometric quantum computation with the integration of the time-optimal control technique.
Our scheme provides a promising alternative way towards scalable fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-01-16T13:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.