Engineering phonon-phonon interactions in multimode circuit quantum
acousto-dynamics
- URL: http://arxiv.org/abs/2303.00730v1
- Date: Wed, 1 Mar 2023 18:45:04 GMT
- Title: Engineering phonon-phonon interactions in multimode circuit quantum
acousto-dynamics
- Authors: Uwe von L\"upke, Ines C. Rodrigues, Yu Yang, Matteo Fadel, Yiwen Chu
- Abstract summary: We show an in-situ tunable beam-splitter-type interaction between several mechanical modes of a high-overtone bulk acoustic wave resonator.
The engineered interaction is mediated by a parametrically driven superconducting transmon qubit.
Our results lay the foundations for using phononic systems as quantum memories and platforms for quantum simulations.
- Score: 1.8960797847221296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, remarkable progress has been made towards encoding and
processing quantum information in the large Hilbert space of bosonic modes.
Mechanical resonators are of great interest for this purpose, since they
confine many high quality factor modes into a small volume and can be easily
integrated with many different quantum systems. An important yet challenging
task is to create direct interactions between different mechanical modes. Here
we demonstrate an in-situ tunable beam-splitter-type interaction between
several mechanical modes of a high-overtone bulk acoustic wave resonator. The
engineered interaction is mediated by a parametrically driven superconducting
transmon qubit, and we show that it can be tailored to couple pairs or triplets
of phononic modes. Furthermore, we use this interaction to demonstrate the
Hong-Ou-Mandel effect between phonons. Our results lay the foundations for
using phononic systems as quantum memories and platforms for quantum
simulations.
Related papers
- Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates [4.888358598482653]
We describe a modular platform capable of rapid multi-phonon entanglement generation and subsequent tomographic analysis.
We generate a mechanical Bell state between the two mechanical resonators, achieving a fidelity of $mathcalF = 0.872pm 0.002$.
We further demonstrate the creation of a multi-phonon entangled state, shared between the two resonators, with fidelity $mathcalF = 0.748pm 0.008$.
arXiv Detail & Related papers (2024-11-24T06:06:14Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Quantum amplification of boson-mediated interactions [0.0]
We experimentally demonstrate the amplification of a boson-mediated interaction between two trapped-ion qubits by parametric modulation of the trapping potential.
The technique can be used in any quantum platform where parametric modulation of the boson channel is possible.
arXiv Detail & Related papers (2020-09-29T23:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.