Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates
- URL: http://arxiv.org/abs/2411.15726v1
- Date: Sun, 24 Nov 2024 06:06:14 GMT
- Title: Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates
- Authors: Ming-Han Chou, Hong Qiao, Haoxiong Yan, Gustav Andersson, Christopher R. Conner, Joel Grebel, Yash J. Joshi, Jacob M. Miller, Rhys G. Povey, Xuntao Wu, Andrew N. Cleland,
- Abstract summary: We describe a modular platform capable of rapid multi-phonon entanglement generation and subsequent tomographic analysis.
We generate a mechanical Bell state between the two mechanical resonators, achieving a fidelity of $mathcalF = 0.872pm 0.002$.
We further demonstrate the creation of a multi-phonon entangled state, shared between the two resonators, with fidelity $mathcalF = 0.748pm 0.008$.
- Score: 4.888358598482653
- License:
- Abstract: Mechanical systems have emerged as a compelling platform for applications in quantum information, leveraging recent advances in the control of phonons, the quanta of mechanical vibrations. Several experiments have demonstrated control and measurement of phonon states in mechanical resonators integrated with superconducting qubits, and while entanglement of two mechanical resonators has been demonstrated in some approaches, a full exploitation of the bosonic nature of phonons, such as multi-phonon entanglement, remains a challenge. Here, we describe a modular platform capable of rapid multi-phonon entanglement generation and subsequent tomographic analysis, using two surface acoustic wave resonators on separate substrates, each connected to a superconducting qubit. We generate a mechanical Bell state between the two mechanical resonators, achieving a fidelity of $\mathcal{F} = 0.872\pm 0.002$, and further demonstrate the creation of a multi-phonon entangled state (N=2 N00N state), shared between the two resonators, with fidelity $\mathcal{F} = 0.748\pm 0.008$. This approach promises the generation and manipulation of more complex phonon states, with potential future applications in bosonic quantum computing in mechanical systems. The compactness, modularity, and scalability of our platform further promises advances in both fundamental science and advanced quantum protocols, including quantum random access memory and quantum error correction.
Related papers
- Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Engineering phonon-phonon interactions in multimode circuit quantum
acousto-dynamics [1.8960797847221296]
We show an in-situ tunable beam-splitter-type interaction between several mechanical modes of a high-overtone bulk acoustic wave resonator.
The engineered interaction is mediated by a parametrically driven superconducting transmon qubit.
Our results lay the foundations for using phononic systems as quantum memories and platforms for quantum simulations.
arXiv Detail & Related papers (2023-03-01T18:45:04Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum optomechanics in tripartite systems [0.0]
We show how tripartite optomechanical interactions, involving the mutual coupling between two distinct optical modes and an acoustic resonance can be used to prepare, manipulate and measure quantum states of mechanical motion.
arXiv Detail & Related papers (2022-10-26T18:24:20Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Quantum state preparation, tomography, and entanglement of mechanical
oscillators [0.0]
We use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators.
Our result represents a concrete step toward feedback-based operation of a quantum acoustic processor.
arXiv Detail & Related papers (2021-10-14T17:28:25Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Proposal for a nanomechanical qubit [0.0]
A mechanical quantum bit could provide an important new platform for quantum computation and sensing.
We show that by coupling one of the flexural modes of a suspended carbon nanotube to the charge states of a double quantum dot defined in the nanotube, it is possible to induce sufficient anharmonicity.
Remarkably, the dephasing due to the quantum dot is expected to be reduced by several orders of magnitude in the coupled system.
arXiv Detail & Related papers (2020-08-24T15:54:23Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.