Designing High-Fidelity Zeno Gates for Dissipative Cat Qubits
- URL: http://arxiv.org/abs/2303.00760v3
- Date: Sun, 23 Jul 2023 07:47:30 GMT
- Title: Designing High-Fidelity Zeno Gates for Dissipative Cat Qubits
- Authors: Ronan Gautier, Mazyar Mirrahimi, Alain Sarlette
- Abstract summary: We introduce four new designs of high-fidelity and bias-preserving cat qubit gates, and compare them to the prevalent gate methods.
These four designs should give a broad overview of gate engineering for dissipative systems with different and complementary ideas.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bosonic cat qubits stabilized with a driven two-photon dissipation are
systems with exponentially biased noise, opening the door to low-overhead,
fault-tolerant and universal quantum computing. However, current gate proposals
for such qubits induce substantial noise of the unprotected type, whose poor
scaling with the relevant experimental parameters limits their practical use.
In this work, we provide a new perspective on dissipative cat qubits by
reconsidering the reservoir mode used to engineer the tailored two-photon
dissipation, and show how it can be leveraged to mitigate gate-induced errors.
Doing so, we introduce four new designs of high-fidelity and bias-preserving
cat qubit gates, and compare them to the prevalent gate methods. These four
designs should give a broad overview of gate engineering for dissipative
systems with different and complementary ideas. In particular, we propose both
already achievable low-error gate designs and longer-term implementations.
Related papers
- Fast Gates of Detuned Cat Qubit [0.0]
Cat qubits have emerged as a promising candidate for quantum computation.
In existing literature, the detuning of the two-photon drive is assumed to be zero for implementing single and multi-qubit gates.
arXiv Detail & Related papers (2024-07-30T13:36:34Z) - Comparative study of quantum error correction strategies for the
heavy-hexagonal lattice [44.99833362998488]
Topological quantum error correction is a milestone in the scaling roadmap of quantum computers.
The square-lattice surface code has become the workhorse to address this challenge.
In some platforms, however, the connectivities are kept even lower in order to minimise gate errors.
arXiv Detail & Related papers (2024-02-03T15:28:27Z) - High-performance repetition cat code using fast noisy operations [0.0]
Cat qubits stabilized by two-photon driven dissipation benefit from exponential suppression of bit-flip errors and an extensive set of gates preserving this protection.
We propose a performance optimization of the repetition cat code architecture using fast but noisy CNOT gates for stabilizer measurements.
arXiv Detail & Related papers (2022-12-22T18:03:37Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - A critical Schr\"odinger cat qubit [0.0]
In cat qubits, an engineered dissipation scheme combining two-photon drive and loss has been used to stabilize this manifold.
In Kerr cat qubits, where highly-performing gates can be engineered, two-photon drive and Kerr nonlinearity cooperate to confine the system.
We show that large detunings and small, but non-negligible, two-photon loss rates are fundamental to achieve optimal performance.
arXiv Detail & Related papers (2022-08-09T17:44:00Z) - Combined Dissipative and Hamiltonian Confinement of Cat Qubits [0.0]
Cat qubits feature an exponential error bias inherited from their non-local encoding in the phase space of a quantum harmonic oscillator.
We introduce a new combined dissipative and Hamiltonian confinement scheme based on two-photon dissipation together with a Two-Photon Exchange (TPE) Hamiltonian.
We demonstrate fast and bias-preserving gates with drastically improved performance compared to dissipative or Hamiltonian schemes.
arXiv Detail & Related papers (2021-12-10T13:55:28Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Error Rates and Resource Overheads of Repetition Cat Qubits [0.0]
We analyze the error rates and the resource overheads of the repetition cat qubit approach to universal and fault-tolerant quantum computation.
Using only bias-preserving gates on the cat-qubits, it is possible to build a universal set of fault-tolerant logical gates.
arXiv Detail & Related papers (2020-09-22T18:33:23Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.