Planning for Attacker Entrapment in Adversarial Settings
- URL: http://arxiv.org/abs/2303.00822v2
- Date: Wed, 5 Apr 2023 21:15:02 GMT
- Title: Planning for Attacker Entrapment in Adversarial Settings
- Authors: Brittany Cates, Anagha Kulkarni, Sarath Sreedharan
- Abstract summary: We propose a framework to generate a defense strategy against an attacker who is working in an environment where a defender can operate without the attacker's knowledge.
Our problem formulation allows us to capture it as a much simpler infinite horizon discounted MDP, in which the optimal policy for the MDP gives the defender's strategy against the actions of the attacker.
- Score: 16.085007590604327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a planning framework to generate a defense strategy
against an attacker who is working in an environment where a defender can
operate without the attacker's knowledge. The objective of the defender is to
covertly guide the attacker to a trap state from which the attacker cannot
achieve their goal. Further, the defender is constrained to achieve its goal
within K number of steps, where K is calculated as a pessimistic lower bound
within which the attacker is unlikely to suspect a threat in the environment.
Such a defense strategy is highly useful in real world systems like honeypots
or honeynets, where an unsuspecting attacker interacts with a simulated
production system while assuming it is the actual production system. Typically,
the interaction between an attacker and a defender is captured using game
theoretic frameworks. Our problem formulation allows us to capture it as a much
simpler infinite horizon discounted MDP, in which the optimal policy for the
MDP gives the defender's strategy against the actions of the attacker. Through
empirical evaluation, we show the merits of our problem formulation.
Related papers
- A Proactive Decoy Selection Scheme for Cyber Deception using MITRE ATT&CK [0.9831489366502301]
Cyber deception allows compensating the late response of defenders to the ever evolving tactics, techniques, and procedures (TTPs) of attackers.
In this work, we design a decoy selection scheme that is supported by an adversarial modeling based on empirical observation of real-world attackers.
Results reveal that the proposed scheme provides the highest interception rate of attack paths using the lowest amount of decoys.
arXiv Detail & Related papers (2024-04-19T10:45:05Z) - Counter-Samples: A Stateless Strategy to Neutralize Black Box Adversarial Attacks [2.9815109163161204]
Our paper presents a novel defence against black box attacks, where attackers use the victim model as an oracle to craft their adversarial examples.
Unlike traditional preprocessing defences that rely on sanitizing input samples, our strategy counters the attack process itself.
We demonstrate that our approach is remarkably effective against state-of-the-art black box attacks and outperforms existing defences for both the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2024-03-14T10:59:54Z) - Optimal Attack and Defense for Reinforcement Learning [11.36770403327493]
In adversarial RL, an external attacker has the power to manipulate the victim agent's interaction with the environment.
We show the attacker's problem of designing a stealthy attack that maximizes its own expected reward.
We argue that the optimal defense policy for the victim can be computed as the solution to a Stackelberg game.
arXiv Detail & Related papers (2023-11-30T21:21:47Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - On Almost-Sure Intention Deception Planning that Exploits Imperfect
Observers [24.11353445650682]
Intention deception involves computing a strategy which deceives the opponent into a wrong belief about the agent's intention or objective.
This paper studies a class of probabilistic planning problems with intention deception and investigates how a defender's limited sensing modality can be exploited.
arXiv Detail & Related papers (2022-09-01T16:38:03Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Defense Against Reward Poisoning Attacks in Reinforcement Learning [29.431349181232203]
We study defense strategies against reward poisoning attacks in reinforcement learning.
We propose an optimization framework for deriving optimal defense policies.
We show that defense policies that are solutions to the proposed optimization problems have provable performance guarantees.
arXiv Detail & Related papers (2021-02-10T23:31:53Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z) - Harnessing adversarial examples with a surprisingly simple defense [47.64219291655723]
I introduce a very simple method to defend against adversarial examples.
The basic idea is to raise the slope of the ReLU function at the test time.
Experiments over MNIST and CIFAR-10 datasets demonstrate the effectiveness of the proposed defense.
arXiv Detail & Related papers (2020-04-26T03:09:42Z) - Deflecting Adversarial Attacks [94.85315681223702]
We present a new approach towards ending this cycle where we "deflect" adversarial attacks by causing the attacker to produce an input that resembles the attack's target class.
We first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance.
arXiv Detail & Related papers (2020-02-18T06:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.