Exploring the possibility of a complex-valued non-Gaussianity measure for quantum states of light
- URL: http://arxiv.org/abs/2303.00880v3
- Date: Wed, 28 Aug 2024 06:52:24 GMT
- Title: Exploring the possibility of a complex-valued non-Gaussianity measure for quantum states of light
- Authors: Andrew J. Pizzimenti, Prajit Dhara, Zacharie Van Herstraeten, Sijie Cheng, Christos N. Gagatsos,
- Abstract summary: We introduce the differential relative entropy between any Wigner function and its Gaussian associate and we examine its potential as a non-Gaussianity measure.
The proposed, phase-space based non-Gaussianity measure is complex-valued, with its imaginary part possessing the physical meaning of the negative volume of the Wigner function.
At the same time, the real part of this measure provides an extra layer of information, rendering the complex-valued quantity a measure of non-Gaussianity.
- Score: 6.512809432683749
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a quantity that is the differential relative entropy between a generic Wigner function and a Gaussian one. We prove that said quantity is minimized with respect to its Gaussian argument, if both Wigner functions in the argument of the Wigner differential entropy have the same first and second moments, i.e., if the Gaussian argument is the Gaussian associate of the other, generic Wigner function. Therefore, we introduce the differential relative entropy between any Wigner function and its Gaussian associate and we examine its potential as a non-Gaussianity measure. We prove that said quantity is faithful, invariant under Gaussian unitary operations, and find a sufficient condition on its monotonic behavior under Gaussian channels. We provide numerical results supporting aforesaid condition. The proposed, phase-space based non-Gaussianity measure is complex-valued, with its imaginary part possessing the physical meaning of the negative volume of the Wigner function. At the same time, the real part of this measure provides an extra layer of information, rendering the complex-valued quantity a measure of non-Gaussianity, instead of a quantity pertaining only to the negativity of the Wigner function. We examine the usefulness of our measure to non-Gaussian quantum state engineering with partial measurements.
Related papers
- Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians [27.20127082606962]
Variational inference (VI) is a popular approach in Bayesian inference.
This work aims to contribute to the theoretical study of VI in the non-Gaussian case.
arXiv Detail & Related papers (2024-06-06T12:38:59Z) - The Tempered Hilbert Simplex Distance and Its Application To Non-linear
Embeddings of TEMs [36.135201624191026]
We introduce three different parameterizations of finite discrete TEMs via Legendre functions of the negative tempered entropy function.
Similar to the Hilbert geometry, the tempered Hilbert distance is characterized as a $t$-symmetrization of the oriented tempered Funk distance.
arXiv Detail & Related papers (2023-11-22T15:24:29Z) - Complex-valued Wigner entropy of a quantum state [0.0]
We argue the merits of defining a complex-valued entropy associated with any Wigner function.
It is anticipated that the complex plane yields a proper framework for analyzing the entropic properties of quasiprobability distributions in phase space.
arXiv Detail & Related papers (2023-10-30T06:30:03Z) - The Wigner function of a semiconfined harmonic oscillator model with a
position-dependent effective mass [0.0]
We compute the Wigner distribution function exactly for a semiconfinement quantum system.
The presence and absence of the applied external homogenous field are studied.
Some special cases and limits are discussed in detail.
arXiv Detail & Related papers (2023-02-24T14:54:32Z) - Page curves and typical entanglement in linear optics [0.0]
We study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary.
We prove various results on the typicality of entanglement as measured by the R'enyi-2 entropy.
Our main make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Quantifying non-Gaussianity of a quantum state by the negative entropy
of quadrature distributions [0.0]
We propose a non-Gaussianity measure of a multimode quantum state based on the negentropy of quadrature distributions.
Our measure satisfies desirable properties as a non-Gaussianity measure.
arXiv Detail & Related papers (2021-09-29T11:22:40Z) - Deformed Explicitly Correlated Gaussians [58.720142291102135]
Deformed correlated Gaussian basis functions are introduced and their matrix elements are calculated.
These basis functions can be used to solve problems with nonspherical potentials.
arXiv Detail & Related papers (2021-08-10T18:23:06Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Estimation of Gaussian random displacement using non-Gaussian states [0.0]
We study the role of non-Gaussianity in the estimation of displacements in quantum information processing.
Our results reveal the role of non-Gaussianity in the estimation of displacements, and pave the way toward the error correction of Gaussian errors using experimentally feasible non-Gaussian states.
arXiv Detail & Related papers (2021-02-10T06:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.