Helpful, Misleading or Confusing: How Humans Perceive Fundamental
Building Blocks of Artificial Intelligence Explanations
- URL: http://arxiv.org/abs/2303.00934v2
- Date: Sat, 15 Apr 2023 07:15:55 GMT
- Title: Helpful, Misleading or Confusing: How Humans Perceive Fundamental
Building Blocks of Artificial Intelligence Explanations
- Authors: Edward Small, Yueqing Xuan, Danula Hettiachchi, Kacper Sokol
- Abstract summary: We take a step back from sophisticated predictive algorithms and look into explainability of simple decision-making models.
We aim to assess how people perceive comprehensibility of their different representations.
This allows us to capture how diverse stakeholders judge intelligibility of fundamental concepts that more elaborate artificial intelligence explanations are built from.
- Score: 11.667611038005552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable artificial intelligence techniques are developed at breakneck
speed, but suitable evaluation approaches lag behind. With explainers becoming
increasingly complex and a lack of consensus on how to assess their utility, it
is challenging to judge the benefit and effectiveness of different
explanations. To address this gap, we take a step back from sophisticated
predictive algorithms and instead look into explainability of simple
decision-making models. In this setting, we aim to assess how people perceive
comprehensibility of their different representations such as mathematical
formulation, graphical representation and textual summarisation (of varying
complexity and scope). This allows us to capture how diverse stakeholders --
engineers, researchers, consumers, regulators and the like -- judge
intelligibility of fundamental concepts that more elaborate artificial
intelligence explanations are built from. This position paper charts our
approach to establishing appropriate evaluation methodology as well as a
conceptual and practical framework to facilitate setting up and executing
relevant user studies.
Related papers
- What Does Evaluation of Explainable Artificial Intelligence Actually Tell Us? A Case for Compositional and Contextual Validation of XAI Building Blocks [16.795332276080888]
We propose a fine-grained validation framework for explainable artificial intelligence systems.
We recognise their inherent modular structure: technical building blocks, user-facing explanatory artefacts and social communication protocols.
arXiv Detail & Related papers (2024-03-19T13:45:34Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - What and How of Machine Learning Transparency: Building Bespoke
Explainability Tools with Interoperable Algorithmic Components [77.87794937143511]
This paper introduces a collection of hands-on training materials for explaining data-driven predictive models.
These resources cover the three core building blocks of this technique: interpretable representation composition, data sampling and explanation generation.
arXiv Detail & Related papers (2022-09-08T13:33:25Z) - On the Objective Evaluation of Post Hoc Explainers [10.981508361941335]
Modern trends in machine learning research have led to algorithms that are increasingly intricate to the degree that they are considered to be black boxes.
In an effort to reduce the opacity of decisions, methods have been proposed to construe the inner workings of such models in a human-comprehensible manner.
We propose a framework for the evaluation of post hoc explainers on ground truth that is directly derived from the additive structure of a model.
arXiv Detail & Related papers (2021-06-15T19:06:51Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Understanding in Artificial Intelligence [10.113757840350727]
We show how progress has been made in benchmark development to measure understanding capabilities of AI methods.
We review as well how current methods develop understanding capabilities.
arXiv Detail & Related papers (2021-01-17T02:29:50Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.