What Does Evaluation of Explainable Artificial Intelligence Actually Tell Us? A Case for Compositional and Contextual Validation of XAI Building Blocks
- URL: http://arxiv.org/abs/2403.12730v1
- Date: Tue, 19 Mar 2024 13:45:34 GMT
- Title: What Does Evaluation of Explainable Artificial Intelligence Actually Tell Us? A Case for Compositional and Contextual Validation of XAI Building Blocks
- Authors: Kacper Sokol, Julia E. Vogt,
- Abstract summary: We propose a fine-grained validation framework for explainable artificial intelligence systems.
We recognise their inherent modular structure: technical building blocks, user-facing explanatory artefacts and social communication protocols.
- Score: 16.795332276080888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant progress, evaluation of explainable artificial intelligence remains elusive and challenging. In this paper we propose a fine-grained validation framework that is not overly reliant on any one facet of these sociotechnical systems, and that recognises their inherent modular structure: technical building blocks, user-facing explanatory artefacts and social communication protocols. While we concur that user studies are invaluable in assessing the quality and effectiveness of explanation presentation and delivery strategies from the explainees' perspective in a particular deployment context, the underlying explanation generation mechanisms require a separate, predominantly algorithmic validation strategy that accounts for the technical and human-centred desiderata of their (numerical) outputs. Such a comprehensive sociotechnical utility-based evaluation framework could allow to systematically reason about the properties and downstream influence of different building blocks from which explainable artificial intelligence systems are composed -- accounting for a diverse range of their engineering and social aspects -- in view of the anticipated use case.
Related papers
- Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Designing explainable artificial intelligence with active inference: A
framework for transparent introspection and decision-making [0.0]
We discuss how active inference can be leveraged to design explainable AI systems.
We propose an architecture for explainable AI systems using active inference.
arXiv Detail & Related papers (2023-06-06T21:38:09Z) - Helpful, Misleading or Confusing: How Humans Perceive Fundamental
Building Blocks of Artificial Intelligence Explanations [11.667611038005552]
We take a step back from sophisticated predictive algorithms and look into explainability of simple decision-making models.
We aim to assess how people perceive comprehensibility of their different representations.
This allows us to capture how diverse stakeholders judge intelligibility of fundamental concepts that more elaborate artificial intelligence explanations are built from.
arXiv Detail & Related papers (2023-03-02T03:15:35Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Alternative models: Critical examination of disability definitions in
the development of artificial intelligence technologies [6.9884176767901005]
This article presents a framework for critically examining AI data analytics technologies through a disability lens.
We consider three conceptual models of disability: the medical model, the social model, and the relational model.
We show how AI technologies designed under each of these models differ so significantly as to be incompatible with and contradictory to one another.
arXiv Detail & Related papers (2022-06-16T16:41:23Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.