A Coarse to Fine Framework for Object Detection in High Resolution Image
- URL: http://arxiv.org/abs/2303.01219v1
- Date: Thu, 2 Mar 2023 13:04:33 GMT
- Title: A Coarse to Fine Framework for Object Detection in High Resolution Image
- Authors: Jinyan Liu, Jie Chen
- Abstract summary: Current approaches of object detection seldom consider detecting tiny object or the large scale variance problem in high resolution images.
We introduce a simple yet efficient approach that improves accuracy of object detection especially for small objects and large scale variance scene.
Our approach can make good use of the sparsity of the objects and the information in high-resolution image, thereby making the detection more efficient.
- Score: 8.316322664637537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection is a fundamental problem in computer vision, aiming at
locating and classifying objects in image. Although current devices can easily
take very high-resolution images, current approaches of object detection seldom
consider detecting tiny object or the large scale variance problem in high
resolution images. In this paper, we introduce a simple yet efficient approach
that improves accuracy of object detection especially for small objects and
large scale variance scene while reducing the computational cost in high
resolution image. Inspired by observing that overall detection accuracy is
reduced if the image is properly down-sampled but the recall rate is not
significantly reduced. Besides, small objects can be better detected by
inputting high-resolution images even if using lightweight detector. We propose
a cluster-based coarse-to-fine object detection framework to enhance the
performance for detecting small objects while ensure the accuracy of large
objects in high-resolution images. For the first stage, we perform coarse
detection on the down-sampled image and center localization of small objects by
lightweight detector on high-resolution image, and then obtains image chips
based on cluster region generation method by coarse detection and center
localization results, and further sends chips to the second stage detector for
fine detection. Finally, we merge the coarse detection and fine detection
results. Our approach can make good use of the sparsity of the objects and the
information in high-resolution image, thereby making the detection more
efficient. Experiment results show that our proposed approach achieves
promising performance compared with other state-of-the-art detectors.
Related papers
- ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
Small objects are usually sparsely distributed and locally clustered.
Massive feature extraction computations are wasted on the non-target background area of images.
We propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing.
arXiv Detail & Related papers (2024-07-23T12:21:23Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Cascaded Zoom-in Detector for High Resolution Aerial Images [12.944309759825902]
We propose an efficient Cascaded Zoom-in (CZ) detector that re-purposes the detector itself for density-guided training and inference.
During training, density crops are located, labeled as a new class, and employed to augment the training dataset.
This approach is easily integrated into any detector, and creates no significant change in the standard detection process.
arXiv Detail & Related papers (2023-03-15T16:39:21Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - Focus-and-Detect: A Small Object Detection Framework for Aerial Images [1.911678487931003]
We propose a two-stage object detection framework called "Focus-and-Detect"
The first stage generates clusters of objects constituting the focused regions.
The second stage, which is also an object detector network, predicts objects within the focal regions.
Results indicate that the proposed two-stage framework achieves an AP score of 42.06 on VisDrone validation dataset.
arXiv Detail & Related papers (2022-03-24T10:43:56Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
We propose a method for ensembling the outputs of multiple object detectors for improving detection performance and precision of bounding boxes on image data.
We extend it to video data by proposing a two-stage tracking-based scheme for detection refinement.
arXiv Detail & Related papers (2021-02-09T12:38:16Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Localizing Grouped Instances for Efficient Detection in Low-Resource
Scenarios [27.920304852537534]
We propose a novel flexible detection scheme that efficiently adapts to variable object sizes and densities.
We rely on a sequence of detection stages, each of which has the ability to predict groups of objects as well as individuals.
We report experimental results on two aerial image datasets, and show that the proposed method is as accurate yet computationally more efficient than standard single-shot detectors.
arXiv Detail & Related papers (2020-04-27T07:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.