ESOD: Efficient Small Object Detection on High-Resolution Images
- URL: http://arxiv.org/abs/2407.16424v1
- Date: Tue, 23 Jul 2024 12:21:23 GMT
- Title: ESOD: Efficient Small Object Detection on High-Resolution Images
- Authors: Kai Liu, Zhihang Fu, Sheng Jin, Ze Chen, Fan Zhou, Rongxin Jiang, Yaowu Chen, Jieping Ye,
- Abstract summary: Small objects are usually sparsely distributed and locally clustered.
Massive feature extraction computations are wasted on the non-target background area of images.
We propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing.
- Score: 36.80623357577051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enlarging input images is a straightforward and effective approach to promote small object detection. However, simple image enlargement is significantly expensive on both computations and GPU memory. In fact, small objects are usually sparsely distributed and locally clustered. Therefore, massive feature extraction computations are wasted on the non-target background area of images. Recent works have tried to pick out target-containing regions using an extra network and perform conventional object detection, but the newly introduced computation limits their final performance. In this paper, we propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing, which can avoid redundant feature extraction and reduce the computation cost. Incorporating a sparse detection head, we are able to detect small objects on high-resolution inputs (e.g., 1080P or larger) for superior performance. The resulting Efficient Small Object Detection (ESOD) approach is a generic framework, which can be applied to both CNN- and ViT-based detectors to save the computation and GPU memory costs. Extensive experiments demonstrate the efficacy and efficiency of our method. In particular, our method consistently surpasses the SOTA detectors by a large margin (e.g., 8% gains on AP) on the representative VisDrone, UAVDT, and TinyPerson datasets. Code will be made public soon.
Related papers
- Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
We introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects.
Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects.
We further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear.
arXiv Detail & Related papers (2024-05-18T12:22:26Z) - YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images [33.80392696735718]
YOLC (You Only Look Clusters) is an efficient and effective framework that builds on an anchor-free object detector, CenterNet.
To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection.
We perform extensive experiments on two aerial image datasets, including Visdrone 2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach.
arXiv Detail & Related papers (2024-04-09T10:03:44Z) - Improving the Detection of Small Oriented Objects in Aerial Images [0.0]
We propose a method to accurately detect small oriented objects in aerial images by enhancing the classification and regression tasks of the oriented object detection model.
We designed the Attention-Points Network consisting of two losses: Guided-Attention Loss (GALoss) and Box-Points Loss (BPLoss)
Experimental results show the effectiveness of our Attention-Points Network on a standard oriented aerial dataset with small object instances.
arXiv Detail & Related papers (2024-01-12T11:00:07Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - A Coarse to Fine Framework for Object Detection in High Resolution Image [8.316322664637537]
Current approaches of object detection seldom consider detecting tiny object or the large scale variance problem in high resolution images.
We introduce a simple yet efficient approach that improves accuracy of object detection especially for small objects and large scale variance scene.
Our approach can make good use of the sparsity of the objects and the information in high-resolution image, thereby making the detection more efficient.
arXiv Detail & Related papers (2023-03-02T13:04:33Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small
Object Detection [17.775203579232144]
We propose a novel query mechanism to accelerate the inference speed of feature-pyramid based object detectors.
The pipeline first predicts the coarse locations of small objects on low-resolution features and then computes the accurate detection results using high-resolution features.
On the popular COCO dataset, the proposed method improves the detection mAP by 1.0 and mAP-small by 2.0, and the high-resolution inference speed is improved to 3.0x on average.
arXiv Detail & Related papers (2021-03-16T15:30:20Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.