Analyzing Effects of Fake Training Data on the Performance of Deep
Learning Systems
- URL: http://arxiv.org/abs/2303.01268v1
- Date: Thu, 2 Mar 2023 13:53:22 GMT
- Title: Analyzing Effects of Fake Training Data on the Performance of Deep
Learning Systems
- Authors: Pratinav Seth, Akshat Bhandari and Kumud Lakara
- Abstract summary: Deep learning models frequently suffer from various problems such as class imbalance and lack of robustness to distribution shift.
With the advent of Generative Adversarial Networks (GANs) it is now possible to generate high-quality synthetic data.
We analyze the effect that various quantities of synthetic data, when mixed with original data, can have on a model's robustness to out-of-distribution data and the general quality of predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models frequently suffer from various problems such as class
imbalance and lack of robustness to distribution shift. It is often difficult
to find data suitable for training beyond the available benchmarks. This is
especially the case for computer vision models. However, with the advent of
Generative Adversarial Networks (GANs), it is now possible to generate
high-quality synthetic data. This synthetic data can be used to alleviate some
of the challenges faced by deep learning models. In this work we present a
detailed analysis of the effect of training computer vision models using
different proportions of synthetic data along with real (organic) data. We
analyze the effect that various quantities of synthetic data, when mixed with
original data, can have on a model's robustness to out-of-distribution data and
the general quality of predictions.
Related papers
- Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - SYNAuG: Exploiting Synthetic Data for Data Imbalance Problems [39.675787338941184]
This paper explores the potential of synthetic data to address the data imbalance problem.
To be specific, our method, dubbed SYNAuG, leverages synthetic data to equalize the unbalanced distribution of training data.
Our experiments demonstrate that, although a domain gap between real and synthetic data exists, training with SYNAuG followed by fine-tuning with a few real samples allows to achieve impressive performance.
arXiv Detail & Related papers (2023-08-02T07:59:25Z) - Transitioning from Real to Synthetic data: Quantifying the bias in model [1.6134566438137665]
This study aims to establish a trade-off between bias and fairness in the models trained using synthetic data.
We demonstrate there exist a varying levels of bias impact on models trained using synthetic data.
arXiv Detail & Related papers (2021-05-10T06:57:14Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.