Dataset Creation Pipeline for Camera-Based Heart Rate Estimation
- URL: http://arxiv.org/abs/2303.01468v1
- Date: Thu, 2 Mar 2023 18:28:29 GMT
- Title: Dataset Creation Pipeline for Camera-Based Heart Rate Estimation
- Authors: Mohamed Moustafa, Amr Elrasad, Joseph Lemley, Peter Corcoran
- Abstract summary: Heart rate is one of the most vital health metrics which can be utilized to investigate and gain intuitions into various human physiological and psychological information.
Various techniques for camera-based heart rate estimation have been developed ranging from classical image processing to convoluted deep learning models and architectures.
In this paper, we discuss how to prepare data for the task of developing an algorithm or machine learning model for heart rate estimation from images of facial regions.
- Score: 0.3058685580689604
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Heart rate is one of the most vital health metrics which can be utilized to
investigate and gain intuitions into various human physiological and
psychological information. Estimating heart rate without the constraints of
contact-based sensors thus presents itself as a very attractive field of
research as it enables well-being monitoring in a wider variety of scenarios.
Consequently, various techniques for camera-based heart rate estimation have
been developed ranging from classical image processing to convoluted deep
learning models and architectures. At the heart of such research efforts lies
health and visual data acquisition, cleaning, transformation, and annotation.
In this paper, we discuss how to prepare data for the task of developing or
testing an algorithm or machine learning model for heart rate estimation from
images of facial regions. The data prepared is to include camera frames as well
as sensor readings from an electrocardiograph sensor. The proposed pipeline is
divided into four main steps, namely removal of faulty data, frame and
electrocardiograph timestamp de-jittering, signal denoising and filtering, and
frame annotation creation. Our main contributions are a novel technique of
eliminating jitter from health sensor and camera timestamps and a method to
accurately time align both visual frame and electrocardiogram sensor data which
is also applicable to other sensor types.
Related papers
- Automatic Cardiac Pathology Recognition in Echocardiography Images Using Higher Order Dynamic Mode Decomposition and a Vision Transformer for Small Datasets [2.0286377328378737]
Heart diseases are the main international cause of human defunction. According to the WHO, nearly 18 million people decease each year because of heart diseases.
In this work, an automatic cardiac pathology recognition system based on a novel deep learning framework is proposed.
arXiv Detail & Related papers (2024-04-30T14:16:45Z) - Chaos in Motion: Unveiling Robustness in Remote Heart Rate Measurement through Brain-Inspired Skin Tracking [7.688280190165613]
Existing remote heart rate measurement methods have three serious problems.
We apply chaos theory to computer vision tasks for the first time, thus a brain-inspired framework.
Our method achieves Robust Skin Tracking for Heart Rate measurement, called HR-RST.
arXiv Detail & Related papers (2024-04-11T12:26:10Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - SCAMPS: Synthetics for Camera Measurement of Physiological Signals [17.023803380199492]
We present SCAMPS, a dataset of synthetics containing 2,800 videos (1.68M frames) with aligned cardiac and respiratory signals and facial action intensities.
We provide descriptive statistics about the underlying waveforms, including inter-beat interval, heart rate variability, and pulse arrival time.
arXiv Detail & Related papers (2022-06-08T23:48:41Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Machine learning models and facial regions videos for estimating heart
rate: a review on Patents, Datasets and Literature [0.0]
Estimating heart rate is important for monitoring users in various situations.
Estimates based on facial videos are increasingly being researched because it makes it possible to monitor cardiac information in a non-invasive way.
This study investigates the benefits and challenges of using machine learning models to estimate heart rate from facial videos.
arXiv Detail & Related papers (2022-02-17T21:54:29Z) - A Supervised Learning Approach for Robust Health Monitoring using Face
Videos [32.157163136267954]
Non-contact, device-free human sensing methods can eliminate the need for specialized heart and blood pressure monitoring equipment.
In this paper, we used a non-contact method that only requires face videos recorded using commercially-available webcams.
The proposed approach used facial recognition to detect the face in each frame of the video using facial landmarks.
arXiv Detail & Related papers (2021-01-30T22:03:16Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z) - Learning Camera Miscalibration Detection [83.38916296044394]
This paper focuses on a data-driven approach to learn the detection of miscalibration in vision sensors, specifically RGB cameras.
Our contributions include a proposed miscalibration metric for RGB cameras and a novel semi-synthetic dataset generation pipeline based on this metric.
By training a deep convolutional neural network, we demonstrate the effectiveness of our pipeline to identify whether a recalibration of the camera's intrinsic parameters is required or not.
arXiv Detail & Related papers (2020-05-24T10:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.