Chaos in Motion: Unveiling Robustness in Remote Heart Rate Measurement through Brain-Inspired Skin Tracking
- URL: http://arxiv.org/abs/2404.07687v1
- Date: Thu, 11 Apr 2024 12:26:10 GMT
- Title: Chaos in Motion: Unveiling Robustness in Remote Heart Rate Measurement through Brain-Inspired Skin Tracking
- Authors: Jie Wang, Jing Lian, Minjie Ma, Junqiang Lei, Chunbiao Li, Bin Li, Jizhao Liu,
- Abstract summary: Existing remote heart rate measurement methods have three serious problems.
We apply chaos theory to computer vision tasks for the first time, thus a brain-inspired framework.
Our method achieves Robust Skin Tracking for Heart Rate measurement, called HR-RST.
- Score: 7.688280190165613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heart rate is an important physiological indicator of human health status. Existing remote heart rate measurement methods typically involve facial detection followed by signal extraction from the region of interest (ROI). These SOTA methods have three serious problems: (a) inaccuracies even failures in detection caused by environmental influences or subject movement; (b) failures for special patients such as infants and burn victims; (c) privacy leakage issues resulting from collecting face video. To address these issues, we regard the remote heart rate measurement as the process of analyzing the spatiotemporal characteristics of the optical flow signal in the video. We apply chaos theory to computer vision tasks for the first time, thus designing a brain-inspired framework. Firstly, using an artificial primary visual cortex model to extract the skin in the videos, and then calculate heart rate by time-frequency analysis on all pixels. Our method achieves Robust Skin Tracking for Heart Rate measurement, called HR-RST. The experimental results show that HR-RST overcomes the difficulty of environmental influences and effectively tracks the subject movement. Moreover, the method could extend to other body parts. Consequently, the method can be applied to special patients and effectively protect individual privacy, offering an innovative solution.
Related papers
- AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation [55.179287851188036]
We introduce a novel all-in-one-stage framework, AiOS, for expressive human pose and shape recovery without an additional human detection step.
We first employ a human token to probe a human location in the image and encode global features for each instance.
Then, we introduce a joint-related token to probe the human joint in the image and encoder a fine-grained local feature.
arXiv Detail & Related papers (2024-03-26T17:59:23Z) - Continuous 3D Myocardial Motion Tracking via Echocardiography [30.19879953016694]
Myocardial motion tracking is an essential clinical tool in the prevention and detection of cardiovascular diseases.
Current techniques suffer from incomplete and inaccurate motion estimation of the myocardium in both spatial and temporal dimensions.
This paper introduces the Neural Cardiac Motion Field (NeuralCMF) to model the 3D structure and the comprehensive 6D forward/backward motion of the heart.
arXiv Detail & Related papers (2023-10-04T13:11:20Z) - Dataset Creation Pipeline for Camera-Based Heart Rate Estimation [0.3058685580689604]
Heart rate is one of the most vital health metrics which can be utilized to investigate and gain intuitions into various human physiological and psychological information.
Various techniques for camera-based heart rate estimation have been developed ranging from classical image processing to convoluted deep learning models and architectures.
In this paper, we discuss how to prepare data for the task of developing an algorithm or machine learning model for heart rate estimation from images of facial regions.
arXiv Detail & Related papers (2023-03-02T18:28:29Z) - Mesh-based 3D Motion Tracking in Cardiac MRI using Deep Learning [11.177851736773823]
3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and diagnosis of cardiovascular diseases.
Most of the previous methods focus on estimating pixel-/voxel-wise motion fields in the full image space.
In this work, we model the heart as a 3D geometric mesh and propose a novel deep learning-based method that can estimate 3D motion of the heart mesh from 2D short-axis CMR images.
arXiv Detail & Related papers (2022-09-05T15:10:27Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - A Supervised Learning Approach for Robust Health Monitoring using Face
Videos [32.157163136267954]
Non-contact, device-free human sensing methods can eliminate the need for specialized heart and blood pressure monitoring equipment.
In this paper, we used a non-contact method that only requires face videos recorded using commercially-available webcams.
The proposed approach used facial recognition to detect the face in each frame of the video using facial landmarks.
arXiv Detail & Related papers (2021-01-30T22:03:16Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - MOMBAT: Heart Rate Monitoring from Face Video using Pulse Modeling and
Bayesian Tracking [10.43230025523549]
We propose a novel face video based HR monitoring method MOMBAT.
We utilize out-of-plane face movements to define a novel quality estimation mechanism.
We design a Bayesian decision theory based HR tracking mechanism to rectify the spurious HR estimates.
arXiv Detail & Related papers (2020-05-10T09:41:16Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2020-04-26T05:43:21Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.