論文の概要: Learning machines for health and beyond
- arxiv url: http://arxiv.org/abs/2303.01513v1
- Date: Thu, 2 Mar 2023 17:27:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 17:24:45.524120
- Title: Learning machines for health and beyond
- Title(参考訳): 健康とそれ以上の学習機械
- Authors: Mahed Abroshan, Oscar Giles, Sam Greenbury, Jack Roberts, Mihaela van
der Schaar, Jannetta S Steyn, Alan Wilson, May Yong
- Abstract要約: 発表後の予測モデルの保守とモニタリングは、安全で効果的な長期使用を保証するために不可欠である。
機械学習技術は、利用可能なデータセットのパターンを探すために効果的に訓練されているため、複雑な実生活問題のモデルの性能はピークに達しない。
むしろ、データは時間とともに変化し、新しいデモグラフィーで使用される新しい場所にモデルが転送されるときにも変化します。
- 参考スコア(独自算出の注目度): 56.119688117992844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning techniques are effective for building predictive models
because they are good at identifying patterns in large datasets. Development of
a model for complex real life problems often stops at the point of publication,
proof of concept or when made accessible through some mode of deployment.
However, a model in the medical domain risks becoming obsolete as soon as
patient demographic changes. The maintenance and monitoring of predictive
models post-publication is crucial to guarantee their safe and effective long
term use. As machine learning techniques are effectively trained to look for
patterns in available datasets, the performance of a model for complex real
life problems will not peak and remain fixed at the point of publication or
even point of deployment. Rather, data changes over time, and they also changed
when models are transported to new places to be used by new demography.
- Abstract(参考訳): 機械学習技術は、大きなデータセットのパターンを特定するのに長けているため、予測モデルを構築するのに効果的である。
複雑な実生活問題のためのモデルの開発は、しばしば出版、概念実証、またはある展開モードを通じてアクセス可能になったときに停止する。
しかし、医療領域のモデルは患者の人口構成が変化するとすぐに時代遅れになるリスクがある。
公開後の予測モデルの保守と監視は、安全かつ効果的な長期使用を保証するために不可欠である。
機械学習のテクニックは、利用可能なデータセットのパターンを探すように効果的に訓練されているため、複雑な現実の問題に対するモデルのパフォーマンスはピークではなく、公開時点やデプロイ時点でも固定される。
むしろ、データは時間とともに変化し、新しいデモグラフィーで使用される新しい場所にモデルが転送されるときにも変化します。
関連論文リスト
- Membership Inference Attacks Against Time-Series Models [0.8437187555622164]
個人情報を含む時系列データは、特に医療分野において、深刻なプライバシー上の懸念を示す。
時系列モデルにおける既存技術について検討し,季節性に着目した新機能を紹介する。
以上の結果から,MIAによる会員識別の有効性が向上し,医療データアプリケーションにおけるプライバシリスクの理解が向上した。
論文 参考訳(メタデータ) (2024-07-03T07:34:49Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Time-aware Heterogeneous Graph Transformer with Adaptive Attention Merging for Health Event Prediction [6.578298085691462]
本稿では,疾患領域の知識を同化し,薬物と疾患の複雑な関係を解明するための新しい異種グラフ学習モデルを提案する。
2つの医療データセットで評価したところ、予測精度と解釈可能性の両方において顕著な改善が見られた。
論文 参考訳(メタデータ) (2024-04-23T08:01:30Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - New Epochs in AI Supervision: Design and Implementation of an Autonomous
Radiology AI Monitoring System [5.50085484902146]
本稿では,放射線学AI分類モデルの性能を実際に監視するための新しい手法を提案する。
予測分散と時間安定性という2つの指標を提案し、AIのパフォーマンス変化のプリエンプティブアラートに使用する。
論文 参考訳(メタデータ) (2023-11-24T06:29:04Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z) - Distillation to Enhance the Portability of Risk Models Across
Institutions with Large Patient Claims Database [12.452703677540505]
可読性予測モデルのクロスサイト評価によるモデルポータビリティの実現性について検討する。
再帰型ニューラルネットワークを自己注意で拡張し、専門家の特徴とブレンドして、可読性予測モデルを構築する。
実験の結果、ある機関で訓練・試験されたMLモデルの直接適用は、同一施設で訓練・試験されたMLモデルよりも悪い結果が得られた。
論文 参考訳(メタデータ) (2022-07-06T05:26:32Z) - Medical Profile Model: Scientific and Practical Applications in
Healthcare [1.718235998156457]
本研究は, 患者の病歴を, 病の時間的シーケンスとして提示し, その埋め込みを教師なしで学習する。
埋め込みスペースには、一般化された患者プロファイルの作成を可能にする人口統計パラメータが含まれている。
このような医療プロファイルモデルのトレーニングは、100万人以上の患者のデータセット上で実施されている。
論文 参考訳(メタデータ) (2021-06-21T13:30:43Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。