論文の概要: Keeping Medical AI Healthy: A Review of Detection and Correction Methods for System Degradation
- arxiv url: http://arxiv.org/abs/2506.17442v1
- Date: Fri, 20 Jun 2025 19:22:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.416837
- Title: Keeping Medical AI Healthy: A Review of Detection and Correction Methods for System Degradation
- Title(参考訳): 医療用AIの健康維持 : システム劣化の検出と補正方法のレビュー
- Authors: Hao Guan, David Bates, Li Zhou,
- Abstract要約: このレビューでは、医療におけるAIシステムの「健康」の監視と維持について、前向きな視点を提示する。
継続的パフォーマンス監視、早期劣化検出、効果的な自己補正メカニズムの緊急ニーズを強調します。
この研究は、ダイナミックな臨床環境における安全な長期展開を維持できる信頼性が高く堅牢な医療AIシステムの開発を導くことを目的としている。
- 参考スコア(独自算出の注目度): 6.781778751487079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is increasingly integrated into modern healthcare, offering powerful support for clinical decision-making. However, in real-world settings, AI systems may experience performance degradation over time, due to factors such as shifting data distributions, changes in patient characteristics, evolving clinical protocols, and variations in data quality. These factors can compromise model reliability, posing safety concerns and increasing the likelihood of inaccurate predictions or adverse outcomes. This review presents a forward-looking perspective on monitoring and maintaining the "health" of AI systems in healthcare. We highlight the urgent need for continuous performance monitoring, early degradation detection, and effective self-correction mechanisms. The paper begins by reviewing common causes of performance degradation at both data and model levels. We then summarize key techniques for detecting data and model drift, followed by an in-depth look at root cause analysis. Correction strategies are further reviewed, ranging from model retraining to test-time adaptation. Our survey spans both traditional machine learning models and state-of-the-art large language models (LLMs), offering insights into their strengths and limitations. Finally, we discuss ongoing technical challenges and propose future research directions. This work aims to guide the development of reliable, robust medical AI systems capable of sustaining safe, long-term deployment in dynamic clinical settings.
- Abstract(参考訳): 人工知能(AI)は現代医療にますます統合され、臨床意思決定に強力な支援を提供している。
しかし、現実の環境では、データ分散のシフト、患者の特性の変化、臨床プロトコルの進化、データ品質の変化などの要因により、AIシステムは時間とともにパフォーマンスが低下する可能性がある。
これらの要因はモデルの信頼性を妥協し、安全性の懸念を提起し、不正確な予測や悪い結果の可能性を増大させる。
このレビューでは、医療におけるAIシステムの「健康」の監視と維持について、前向きな視点を提示する。
継続的パフォーマンス監視、早期劣化検出、効果的な自己補正メカニズムの緊急ニーズを強調します。
論文は、データレベルとモデルレベルでの性能劣化の一般的な原因をレビューすることから始まる。
次に,データ検出とモデルドリフトの主要手法を要約し,根本原因分析を詳細に検討した。
補正戦略は、モデル再訓練からテスト時間適応まで、さらにレビューされる。
私たちの調査は、従来の機械学習モデルと最先端の大規模言語モデル(LLM)の両方にまたがっており、その強みと制限に関する洞察を提供しています。
最後に,現在進行中の技術課題について議論し,今後の研究方向性を提案する。
この研究は、ダイナミックな臨床環境における安全な長期展開を維持できる信頼性が高く堅牢な医療AIシステムの開発を導くことを目的としている。
関連論文リスト
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
本研究は,AI支援医療診断における信頼性の重要課題について論じる。
本研究は,診断に自信がなければ,診断システムによる意思決定の回避を可能にする選択予測手法に焦点をあてる。
我々は、選択予測タスクにおける信頼性を高めるための新しい最先端手法であるHUQ-2を紹介する。
論文 参考訳(メタデータ) (2025-02-25T10:15:21Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
この章は、医療で信頼できるAIシステムを作るには、公平さ、説明可能性、プライバシーを慎重に考慮する必要があることを強調している。
AIによる公平な医療提供を保証するという課題は強調され、臨床予測モデルのバイアスを特定し緩和する方法が議論されている。
この議論は、ディープラーニングモデルのデータ漏洩からモデル説明に対する高度な攻撃に至るまで、医療AIシステムのプライバシ脆弱性の分析に進展している。
論文 参考訳(メタデータ) (2025-01-16T16:17:39Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
機械学習(ML)は、高度なアルゴリズムと臨床データを統合することで、医学的診断に革命をもたらした。
RFモデルは高次元データの処理において堅牢な性能を示す。
CNNは、がん検出において異常な精度を示している。
LSTMネットワークは、時間的データの解析に優れ、臨床劣化の正確な予測を提供する。
論文 参考訳(メタデータ) (2024-08-05T09:41:34Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - New Epochs in AI Supervision: Design and Implementation of an Autonomous
Radiology AI Monitoring System [5.50085484902146]
本稿では,放射線学AI分類モデルの性能を実際に監視するための新しい手法を提案する。
予測分散と時間安定性という2つの指標を提案し、AIのパフォーマンス変化のプリエンプティブアラートに使用する。
論文 参考訳(メタデータ) (2023-11-24T06:29:04Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。