論文の概要: ConTEXTual Net: A Multimodal Vision-Language Model for Segmentation of
Pneumothorax
- arxiv url: http://arxiv.org/abs/2303.01615v1
- Date: Thu, 2 Mar 2023 22:36:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 16:49:13.664708
- Title: ConTEXTual Net: A Multimodal Vision-Language Model for Segmentation of
Pneumothorax
- Title(参考訳): context net: 気胸のセグメンテーションのためのマルチモーダル視覚言語モデル
- Authors: Zachary Huemann, Junjie Hu, Tyler Bradshaw
- Abstract要約: 気胸セグメンテーションの課題に対する視覚言語モデルを構築した。
記述型言語は性能向上のためのセグメンテーションモデルに組み込むことができることを示す。
- 参考スコア(独自算出の注目度): 8.442412179333205
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Clinical imaging databases contain not only medical images but also text
reports generated by physicians. These narrative reports often describe the
location, size, and shape of the disease, but using descriptive text to guide
medical image analysis has been understudied. Vision-language models are
increasingly used for multimodal tasks like image generation, image captioning,
and visual question answering but have been scarcely used in medical imaging.
In this work, we develop a vision-language model for the task of pneumothorax
segmentation. Our model, ConTEXTual Net, detects and segments pneumothorax in
chest radiographs guided by free-form radiology reports. ConTEXTual Net
achieved a Dice score of 0.72 $\pm$ 0.02, which was similar to the level of
agreement between the primary physician annotator and the other physician
annotators (0.71 $\pm$ 0.04). ConTEXTual Net also outperformed a U-Net. We
demonstrate that descriptive language can be incorporated into a segmentation
model for improved performance. Through an ablative study, we show that it is
the text information that is responsible for the performance gains.
Additionally, we show that certain augmentation methods worsen ConTEXTual Net's
segmentation performance by breaking the image-text concordance. We propose a
set of augmentations that maintain this concordance and improve segmentation
training.
- Abstract(参考訳): 臨床画像データベースには医療画像だけでなく、医師が生成したテキストレポートも含まれている。
これらの物語は、しばしば病気の位置、大きさ、形状を記述しているが、医学的画像分析を導くための記述的テキストを用いて検討されている。
視覚言語モデルは、画像生成、画像キャプション、視覚的質問応答といったマルチモーダルなタスクにますます使われていますが、医療画像にはほとんど使われていません。
本研究では,気胸分離作業のための視覚言語モデルを開発した。
本モデルであるConTEXTual Netは, 胸部X線写真から気胸を検知し, 分画する。
ConTEXTual Net は Dice スコア 0.72$\pm$ 0.02 を達成し、これは主医師の注釈と他の医師の注釈との合意のレベル (0.71$\pm$ 0.04) に似ていた。
ConTEXTual NetもU-Netを上回った。
記述型言語は性能向上のためのセグメンテーションモデルに組み込むことができることを示す。
アブレーション研究を通じて,性能向上に責任を持つのはテキスト情報であることを示す。
さらに,画像テキストの一致を断ち切ることで,ConTEXTual Netのセグメンテーション性能が悪化することを示す。
我々は,この一致を維持し,セグメンテーション訓練を改善する一連の拡張を提案する。
関連論文リスト
- A Lesion-aware Edge-based Graph Neural Network for Predicting Language Ability in Patients with Post-stroke Aphasia [12.129896943547912]
本稿では,脳卒中後失語症患者の安静時fMRI(r-fMRI)接続から言語能力を予測するために,病変認識型グラフニューラルネットワーク(LEGNet)を提案する。
本モデルでは,脳領域間の機能的接続を符号化するエッジベース学習モジュール,病変符号化モジュール,サブグラフ学習モジュールの3つのコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-03T21:28:48Z) - Contrastive Learning with Counterfactual Explanations for Radiology Report Generation [83.30609465252441]
放射線学レポート生成のためのtextbfCountertextbfFactual textbfExplanations-based framework (CoFE) を提案する。
反現実的な説明は、アルゴリズムによってなされた決定をどのように変えられるかを理解するための強力なツールとして、シナリオが何であるかを問うことによって役立ちます。
2つのベンチマークの実験では、反ファクト的な説明を活用することで、CoFEは意味的に一貫性があり、事実的に完全なレポートを生成することができる。
論文 参考訳(メタデータ) (2024-07-19T17:24:25Z) - CXR-Agent: Vision-language models for chest X-ray interpretation with uncertainty aware radiology reporting [0.0]
胸部X線解釈のための基礎的視覚言語モデルとして, 一般に公開されている技術の現状を評価した。
視覚言語モデルは、しばしば自信のある言語と幻覚し、臨床解釈を遅くする。
我々は,CheXagentの線形プローブとBioViL-Tのフレーズグラウンドティングツールを用いて,エージェントベースの視覚言語によるレポート生成手法を開発した。
論文 参考訳(メタデータ) (2024-07-11T18:39:19Z) - Towards a Holistic Framework for Multimodal Large Language Models in Three-dimensional Brain CT Report Generation [42.06416052431378]
2Dラジオグラフィーキャプションは、ボリューム3D解剖学における現実の診断課題を反映するものではない。
我々は18,885組の3D-BrainCTデータセットを収集し,臨床ビジュアルインストラクション・チューニングを用いて,脳波モデルを用いて放射線治療を施した3D脳CTレポートを作成した。
私たちの研究は、3Dの脳CTデータセットのキュレーション、微調整による解剖学的意味のある言語モデル、堅牢な放射線学評価指標の提案など、総合的な枠組みを具現化したものです。
論文 参考訳(メタデータ) (2024-07-02T12:58:35Z) - CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
我々は,CT-GLIP(Grounded Language- Image Pretraining with CT scans)を導入する。
本手法は,104臓器にわたる17,702症例を対象に,44,011例の臓器レベルの視覚テキストペアからなるマルチモーダルCTデータセットを用いて訓練し,自然言語を用いて臓器と異常をゼロショットで識別できることを実証した。
論文 参考訳(メタデータ) (2024-04-23T17:59:01Z) - One Model to Rule them All: Towards Universal Segmentation for Medical Images with Text Prompts [62.55349777609194]
我々は、SATと呼ばれるテキストプロンプトによって駆動される放射線学的スキャンにおいて、任意のセグメンテーションを可能にするモデルを構築することを目指している。
トレーニングのために、最大かつ最も包括的なセグメンテーションデータセットを構築します。
我々はSAT-Nano(110Mパラメータ)とSAT-Pro(447Mパラメータ)をトレーニングし、データセット/サブセット毎にトレーニングされた72の専門家nnU-Netに匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-28T18:16:00Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - A Comparison of Pre-trained Vision-and-Language Models for Multimodal
Representation Learning across Medical Images and Reports [5.074841553282345]
本研究では,MIMIC-CXRラジオグラフィーおよび関連レポートから,事前学習した4つのV+Lモデルを用いてマルチモーダル表現を学習する。
先駆的なCNN-RNNモデルと比較して、事前訓練されたV+Lモデルによって学習された共同埋め込みは、胸郭所見分類タスクの性能改善を示す。
論文 参考訳(メタデータ) (2020-09-03T09:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。