論文の概要: A Lesion-aware Edge-based Graph Neural Network for Predicting Language Ability in Patients with Post-stroke Aphasia
- arxiv url: http://arxiv.org/abs/2409.02303v1
- Date: Tue, 3 Sep 2024 21:28:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 21:14:11.187546
- Title: A Lesion-aware Edge-based Graph Neural Network for Predicting Language Ability in Patients with Post-stroke Aphasia
- Title(参考訳): 敗血症後失語症患者の言語能力予測のための病変認識エッジベースグラフニューラルネットワーク
- Authors: Zijian Chen, Maria Varkanitsa, Prakash Ishwar, Janusz Konrad, Margrit Betke, Swathi Kiran, Archana Venkataraman,
- Abstract要約: 本稿では,脳卒中後失語症患者の安静時fMRI(r-fMRI)接続から言語能力を予測するために,病変認識型グラフニューラルネットワーク(LEGNet)を提案する。
本モデルでは,脳領域間の機能的接続を符号化するエッジベース学習モジュール,病変符号化モジュール,サブグラフ学習モジュールの3つのコンポーネントを統合する。
- 参考スコア(独自算出の注目度): 12.129896943547912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a lesion-aware graph neural network (LEGNet) to predict language ability from resting-state fMRI (rs-fMRI) connectivity in patients with post-stroke aphasia. Our model integrates three components: an edge-based learning module that encodes functional connectivity between brain regions, a lesion encoding module, and a subgraph learning module that leverages functional similarities for prediction. We use synthetic data derived from the Human Connectome Project (HCP) for hyperparameter tuning and model pretraining. We then evaluate the performance using repeated 10-fold cross-validation on an in-house neuroimaging dataset of post-stroke aphasia. Our results demonstrate that LEGNet outperforms baseline deep learning methods in predicting language ability. LEGNet also exhibits superior generalization ability when tested on a second in-house dataset that was acquired under a slightly different neuroimaging protocol. Taken together, the results of this study highlight the potential of LEGNet in effectively learning the relationships between rs-fMRI connectivity and language ability in a patient cohort with brain lesions for improved post-stroke aphasia evaluation.
- Abstract(参考訳): 本稿では,脳卒中後失語症患者の安静時fMRI(r-fMRI)接続から言語能力を予測するために,病変認識型グラフニューラルネットワーク(LEGNet)を提案する。
本モデルでは,脳領域間の機能的接続を符号化するエッジベース学習モジュール,病変符号化モジュール,機能的類似性を利用して予測を行うサブグラフ学習モジュールの3つのコンポーネントを統合する。
我々は,Human Connectome Project(HCP)から得られた合成データを用いて,ハイパーパラメータチューニングとモデル事前学習を行う。
その後,脳卒中後失語症例の神経画像データセットを用いて10倍のクロスバリデーションを繰り返して評価した。
その結果,LEGNetは言語能力の予測において,ベースラインのディープラーニング手法よりも優れていた。
LEGNetはまた、わずかに異なるニューロイメージングプロトコルで取得された第2の社内データセットでテストすると、優れた一般化能力を示す。
本研究は,脳病変をともなう患者において,RS-fMRI接続性と言語能力の関係を効果的に学習する上で,LEGNetが有用であることを示すものである。
関連論文リスト
- Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
LLMを用いたfMRIエンコーディングと脳のスコアを用いた高齢者の言語関連機能変化について検討する。
脳のスコアと認知スコアの相関関係を脳全体のROIと言語関連ROIの両方で分析した。
以上の結果から,認知能力の向上は,中側頭回に有意な相関がみられた。
論文 参考訳(メタデータ) (2024-07-15T01:09:08Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
大規模言語モデル(LLM)は、人間の言語システムの効果的なモデルであることが示されている。
本研究では、未学習モデルの驚くほどのアライメントを駆動する重要なアーキテクチャコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-21T12:54:03Z) - A Sentiment Analysis of Medical Text Based on Deep Learning [1.8130068086063336]
本稿では,変換器(BERT)の双方向エンコーダ表現を基礎的事前学習モデルとして用いた医療領域に焦点を当てた。
METS-CoVデータセットを用いて実験と解析を行い、異なるディープラーニングネットワークの統合後のトレーニング性能について検討した。
CNNモデルは、BERTのような事前訓練されたモデルと組み合わせて、小さな医療用テキストデータセットでトレーニングされた場合、他のネットワークよりも優れています。
論文 参考訳(メタデータ) (2024-04-16T12:20:49Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
機能的MRI(fMRI)によって導かれる自己神経変調タスクを行う個人のための個人表現を学習するためのディープニューラルネットワーク手法を提案する。
この表現は、直近のfMRIフレームが与えられた次のfMRIフレームにおける扁桃体活動を予測する自己教師型リカレントニューラルネットワークによって学習され、学習された個々の表現に条件付けされる。
論文 参考訳(メタデータ) (2021-12-06T10:16:54Z) - A Multi-Task Deep Learning Framework to Localize the Eloquent Cortex in
Brain Tumor Patients Using Dynamic Functional Connectivity [7.04584289867204]
脳腫瘍患者の大脳皮質の言語と運動領域を同時に局在させるために動的機能接続を用いた新しいディープラーニングフレームワークを提案する。
本モデルは,従来の深層学習手法よりも高い局所化精度を達成し,左半球側方化症例で訓練した場合でも,両言語領域を識別できる。
論文 参考訳(メタデータ) (2020-11-17T18:18:09Z) - Correlation based Multi-phasal models for improved imagined speech EEG
recognition [22.196642357767338]
本研究の目的は,特定の音声単位に対応する音声の動きを,話し,想像,実行しながら記録された多相脳波データに含まれる並列情報から利益を得ることである。
ニューラルネットワークを用いた二相共通表現学習モジュールは、解析フェーズと支援フェーズ間の相関をモデル化する。
提案手法は復号化時の多相データの非可利用性をさらに扱う。
論文 参考訳(メタデータ) (2020-11-04T09:39:53Z) - Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data [3.276067241408604]
本稿では、ニューラルネットワークと辞書学習を組み合わせた統合フレームワークを提案し、静止状態機能MRIと行動データの間の複雑な相互作用をモデル化する。
自閉症スペクトラム障害(ASD)52例を用いたマルチスコア予測課題における組み合わせモデルの評価を行った。
統合されたフレームワークは,3種類の臨床重症度を予測するために,10倍のクロス・コンフィグレーション・セッティングにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-07-03T20:14:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。