論文の概要: Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections
- arxiv url: http://arxiv.org/abs/2303.01841v1
- Date: Fri, 3 Mar 2023 10:49:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 15:23:37.837377
- Title: Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections
- Title(参考訳): 直交多面体射影をもつ無向性神経微分方程式
- Authors: Edward De Brouwer and Rahul G. Krishnan
- Abstract要約: 本稿では,長期記憶を強制し,基礎となる力学系の大域的表現を保存する定式化であるPolyODEを提案する。
提案手法は理論的保証に支えられ,過去と将来のデータの再構築において,過去の成果よりも優れていたことを実証する。
- 参考スコア(独自算出の注目度): 6.345523830122166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural ordinary differential equations (Neural ODEs) are an effective
framework for learning dynamical systems from irregularly sampled time series
data. These models provide a continuous-time latent representation of the
underlying dynamical system where new observations at arbitrary time points can
be used to update the latent representation of the dynamical system. Existing
parameterizations for the dynamics functions of Neural ODEs limit the ability
of the model to retain global information about the time series; specifically,
a piece-wise integration of the latent process between observations can result
in a loss of memory on the dynamic patterns of previously observed data points.
We propose PolyODE, a Neural ODE that models the latent continuous-time process
as a projection onto a basis of orthogonal polynomials. This formulation
enforces long-range memory and preserves a global representation of the
underlying dynamical system. Our construction is backed by favourable
theoretical guarantees and in a series of experiments, we demonstrate that it
outperforms previous works in the reconstruction of past and future data, and
in downstream prediction tasks.
- Abstract(参考訳): ニューラル常微分方程式(Neural ordinary differential equations、Neural ODEs)は、不規則サンプル時系列データから力学系を学習するための有効なフレームワークである。
これらのモデルは、力学系の潜在表現を更新するために任意の時点における新しい観測を使うことができる、基礎となる力学系の連続的な時間潜在表現を提供する。
ニューラルオデムのダイナミクス関数に対する既存のパラメータ化は、時系列に関する大域的な情報を保持できるモデルの能力を制限する;具体的には、観測間の潜在過程の分割的な統合は、以前に観測されたデータポイントの動的パターンのメモリ損失をもたらす可能性がある。
本研究では,潜在連続時間過程を直交多項式に基づく射影としてモデル化するニューラルodeを提案する。
この定式化は長距離メモリを強制し、基礎となる力学系のグローバルな表現を保存する。
提案手法は理論的保証によって裏付けられ, 過去の過去と将来のデータの再構築や下流予測タスクにおいて, 過去の成果よりも優れていることを示す。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Neural Koopman prior for data assimilation [7.875955593012905]
ニューラルネットワークアーキテクチャを使って、潜在空間に動的システムを埋め込む。
本研究では,このようなモデルを長期の継続的再構築のために訓練する手法を提案する。
また,変動データ同化手法の先行として,訓練された動的モデルの有望な利用を示すとともに,自己教師型学習の可能性も示された。
論文 参考訳(メタデータ) (2023-09-11T09:04:36Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
この研究は、動的モデリング能力を改善する偏微分方程式(PDE)に基づくフレームワークを提案する。
時間的離散化の反復的操作や特定のグリッドを必要とせずに連続的に処理できるニューラル演算子を提案する。
我々のフレームワークは、現実世界のアプリケーションに容易に適用可能な、ニューラルネットワークの継続的な表現のための新しい方法を開く。
論文 参考訳(メタデータ) (2023-02-02T03:47:52Z) - Neural Continuous-Discrete State Space Models for Irregularly-Sampled
Time Series [18.885471782270375]
NCDSSMは補助変数を用いて力学からの認識をアンタングルし、補助変数のみに償却推論を必要とする。
本稿では、潜在力学の3つのフレキシブルパラメータ化と、推論中の動的状態の辺りを生かした効率的な学習目標を提案する。
複数のベンチマークデータセットの実証結果は、既存のモデルよりもNCDSSMの計算性能と予測性能が改善されたことを示している。
論文 参考訳(メタデータ) (2023-01-26T18:45:04Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
グラフ構造を持つ多エージェント動的システムをモデル化するための潜在常微分方程式生成モデルLG-ODEを提案する。
高次元軌跡の埋め込みと連続潜伏系力学を同時に学習することができる。
我々のモデルは、教師なしの方法で初期状態を推論できるグラフニューラルネットワークによってパラメータ化された新しいエンコーダを採用している。
論文 参考訳(メタデータ) (2020-11-08T01:02:22Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。