論文の概要: Causal Machine Learning for Healthcare and Precision Medicine
- arxiv url: http://arxiv.org/abs/2205.11402v1
- Date: Mon, 23 May 2022 15:45:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 00:15:47.586384
- Title: Causal Machine Learning for Healthcare and Precision Medicine
- Title(参考訳): 医療と精密医療のための因果機械学習
- Authors: Pedro Sanchez and Jeremy P. Voisey and Tian Xia and Hannah I. Watson
and Alison Q. ONeil and Sotirios A. Tsaftaris
- Abstract要約: 因果機械学習(CML)は、医療で人気が高まっている。
臨床意思決定支援システムの様々な側面に因果推論を組み込む方法について検討する。
- 参考スコア(独自算出の注目度): 16.846051073534966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal machine learning (CML) has experienced increasing popularity in
healthcare. Beyond the inherent capabilities of adding domain knowledge into
learning systems, CML provides a complete toolset for investigating how a
system would react to an intervention (e.g.\ outcome given a treatment).
Quantifying effects of interventions allows actionable decisions to be made
whilst maintaining robustness in the presence of confounders. Here, we explore
how causal inference can be incorporated into different aspects of clinical
decision support (CDS) systems by using recent advances in machine learning.
Throughout this paper, we use Alzheimer's disease (AD) to create examples for
illustrating how CML can be advantageous in clinical scenarios. Furthermore, we
discuss important challenges present in healthcare applications such as
processing high-dimensional and unstructured data, generalisation to
out-of-distribution samples, and temporal relationships, that despite the great
effort from the research community remain to be solved. Finally, we review
lines of research within causal representation learning, causal discovery and
causal reasoning which offer the potential towards addressing the
aforementioned challenges.
- Abstract(参考訳): 因果機械学習(CML)は医療で人気が高まっている。
学習システムにドメイン知識を追加するという本質的な能力の他に、CMLはシステムがどのように介入に反応するか(例えば治療を受けた結果)を調べるための完全なツールセットを提供する。
介入の効果を定量化することで、共同創設者の存在下での堅牢性を維持しながら、行動可能な意思決定が可能になる。
本稿では,最近の機械学習の進歩を用いて,因果推論を臨床意思決定支援システム(cds)のさまざまな側面に組み込む方法について検討する。
本稿では,アルツハイマー病(ad)を用いて,臨床シナリオにおいてcmlがいかに有利かを示す例を示す。
さらに,高次元および非構造化データの処理,分散サンプルへの一般化,時間的関係など,研究コミュニティからの多大な努力にもかかわらず解決すべき課題についても論じる。
最後に, 因果表現学習, 因果発見, 因果推論における研究の行をレビューし, 上記の課題に対処できる可能性について考察する。
関連論文リスト
- Large Language Models as Co-Pilots for Causal Inference in Medical Studies [0.0]
本研究では,大規模言語モデル(LLM)を共同パイロットツールとして活用し,因果推論の有効性を損なう研究設計上の欠陥の同定を支援する。
本研究では,LLMの概念的枠組みを,様々な分野のドメイン知識を符号化する因果コパイロットとして提案する。
論文 参考訳(メタデータ) (2024-07-26T22:43:15Z) - Review of Interpretable Machine Learning Models for Disease Prognosis [6.758348517014495]
新型コロナウイルス(COVID-19)のパンデミックを受けて、解釈可能な機械学習が大きな注目を集めている。
本稿では,呼吸器疾患の予後を予測するための解釈可能な機械学習の応用について概説する。
論文 参考訳(メタデータ) (2024-05-19T20:39:46Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Artificial Intelligence for Dementia Research Methods Optimization [0.49050354212898845]
本稿では,認知症研究において最も頻繁に使用される機械学習アルゴリズムの概要を紹介する。
本稿では, 再現性と解釈可能性の問題と, 認知症研究の臨床的応用性への影響について論じる。
本稿では, 伝達学習, マルチタスク学習, 強化学習といった最先端の手法が, これらの課題を克服するためにどのように応用されるかを示す。
論文 参考訳(メタデータ) (2023-03-02T08:50:25Z) - Deep learning and machine learning for Malaria detection: overview,
challenges and future directions [0.0]
本研究では、さまざまな機械学習および画像処理手法を用いて、マラリアの病気を検出し予測する。
そこで本研究では,マラリア検出に広く適用可能なスマートツールとして,ディープラーニング技術の可能性を見出した。
論文 参考訳(メタデータ) (2022-09-27T10:33:00Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。