論文の概要: Single-photon Image Super-resolution via Self-supervised Learning
- arxiv url: http://arxiv.org/abs/2303.02033v1
- Date: Fri, 3 Mar 2023 15:52:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 14:21:04.459058
- Title: Single-photon Image Super-resolution via Self-supervised Learning
- Title(参考訳): 自己教師型学習による単一光子画像超解像
- Authors: Yiwei Chen, Chen Jiang and Yu Pan
- Abstract要約: SPISR(Single-Photon Image Super-Resolution)は、高分解能の光子計数キューブを、高分解能の低分解能キューブから計算画像アルゴリズムによって回収することを目的としている。
EI(Equivariant Imaging)を単一光子データに拡張することにより、SPISRタスクのための自己教師付き学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.218646347012887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-Photon Image Super-Resolution (SPISR) aims to recover a
high-resolution volumetric photon counting cube from a noisy low-resolution one
by computational imaging algorithms. In real-world scenarios, pairs of training
samples are often expensive or impossible to obtain. By extending Equivariant
Imaging (EI) to volumetric single-photon data, we propose a self-supervised
learning framework for the SPISR task. Particularly, using the Poisson unbiased
Kullback-Leibler risk estimator and equivariance, our method is able to learn
from noisy measurements without ground truths. Comprehensive experiments on
simulated and real-world dataset demonstrate that the proposed method achieves
comparable performance with supervised learning and outperforms
interpolation-based methods.
- Abstract(参考訳): SPISR(Single-Photon Image Super-Resolution)は,高分解能光子カウントキューブを高分解能の低分解能キューブから計算画像アルゴリズムにより回収することを目的とする。
実世界のシナリオでは、トレーニングサンプルのペアは、しばしば高価または入手不可能である。
EI(Equivariant Imaging)をボリューム単光子データに拡張することにより、SPISRタスクのための自己教師付き学習フレームワークを提案する。
特に poisson unbiased kullback-leibler risk estimator と equivariance を用いて, 基礎的真理を伴わずに, 騒音測定から学習することができる。
シミュレーションおよび実世界のデータセットに関する包括的実験により,提案手法が教師あり学習と同等の性能を達成し,補間に基づく手法を上回った。
関連論文リスト
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Self-Supervised Learning for Image Super-Resolution and Deblurring [9.587978273085296]
近年, 自己監督法は, 様々な画像逆問題において, 教師付き法と同程度に有効であることが証明されている。
本稿では,多くの画像分布が大まかにスケール不変であるという事実を活用する,新たな自己教師型アプローチを提案する。
提案手法が他の自己教師型手法より優れていることを示す実データセットに関する一連の実験を行った。
論文 参考訳(メタデータ) (2023-12-18T14:30:54Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
単一画像超解像(SISR)は、与えられた低解像度(LR)画像を高解像度(HR)にアップサンプリングすることを目的とした課題である。
近年のアプローチは、単純化されたダウンサンプリング演算子によって劣化したシミュレーションLR画像に基づいて訓練されている。
Invertible Scale-Conditional Function (ICF) を提案する。これは入力画像をスケールし、異なるスケール条件で元の入力を復元する。
論文 参考訳(メタデータ) (2023-07-24T12:42:45Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Generalized Expectation Maximization Framework for Blind Image Super
Resolution [28.108363151431877]
視覚障害者のためのエンドツーエンド学習フレームワークを提案する。
提案手法は,一般予測最大化(GEM)アルゴリズムに学習手法を統合し,最大推定(MLE)からHR画像を推定する。
論文 参考訳(メタデータ) (2023-05-23T10:01:58Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
実世界の画像超解像は,高品質な画像を得るための実用的な画像復元問題である。
深層学習に基づく手法は、現実世界の超解像データセットの復元に期待できる品質を実現している。
本稿では,RWSR-EDL(Real-World Image Super-Resolution by Exclusionary Dual-Learning)を提案する。
論文 参考訳(メタデータ) (2022-06-06T13:28:15Z) - Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models [3.9037347042028254]
ほとんどの単一画像超解像法は、合成低分解能(LR)と高分解能(HR)画像対上で開発されている。
ハードウェアの知識を取り入れた未知の劣化過程をシミュレートする新しい教師付き手法を提案する。
実世界のデータセットを用いた実験により,我々の劣化モデルが所定の劣化操作よりも精度良くLR画像を推定できることが確認された。
論文 参考訳(メタデータ) (2021-10-20T19:53:48Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
本研究では,制約のある事前知識を伴わずに未知のサンプル処理をシミュレートする手法を提案する。
対の例を使わずに対象LR画像の分布を模倣する汎用化可能な低周波損失(LFL)を提案する。
論文 参考訳(メタデータ) (2021-09-08T06:00:32Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
我々は,超解像残差畳み込み生成共役ネットワーク(SRResCGAN)を提案する。
これは、生成したLRドメインからHRドメインの画素単位の監督でモデルを逆トレーニングすることで、現実世界の劣化設定に従う。
提案するネットワークは,画像の高精細化と凸最適化によるエネルギーベース目的関数の最小化により,残差学習を利用する。
論文 参考訳(メタデータ) (2020-05-03T00:12:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。