論文の概要: Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models
- arxiv url: http://arxiv.org/abs/2110.10755v1
- Date: Wed, 20 Oct 2021 19:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-22 17:41:25.575234
- Title: Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models
- Title(参考訳): ハードウェア適応分解モデルによる実世界画像の超解像化に向けて
- Authors: Rui Ma, Johnathan Czernik, Xian Du
- Abstract要約: ほとんどの単一画像超解像法は、合成低分解能(LR)と高分解能(HR)画像対上で開発されている。
ハードウェアの知識を取り入れた未知の劣化過程をシミュレートする新しい教師付き手法を提案する。
実世界のデータセットを用いた実験により,我々の劣化モデルが所定の劣化操作よりも精度良くLR画像を推定できることが確認された。
- 参考スコア(独自算出の注目度): 3.9037347042028254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most single image super-resolution (SR) methods are developed on synthetic
low-resolution (LR) and high-resolution (HR) image pairs, which are simulated
by a predetermined degradation operation, e.g., bicubic downsampling. However,
these methods only learn the inverse process of the predetermined operation, so
they fail to super resolve the real-world LR images; the true formulation
deviates from the predetermined operation. To address this problem, we propose
a novel supervised method to simulate an unknown degradation process with the
inclusion of the prior hardware knowledge of the imaging system. We design an
adaptive blurring layer (ABL) in the supervised learning framework to estimate
the target LR images. The hyperparameters of the ABL can be adjusted for
different imaging hardware. The experiments on the real-world datasets validate
that our degradation model can estimate LR images more accurately than the
predetermined degradation operation, as well as facilitate existing SR methods
to perform reconstructions on real-world LR images more accurately than the
conventional approaches.
- Abstract(参考訳): ほとんどの単一画像超解像(SR)法は、合成低分解能(LR)と高分解能(HR)画像対で開発され、バイコビックダウンサンプリングなどの所定の劣化操作によってシミュレーションされる。
しかし、これらの手法は所定演算の逆過程のみを学習するため、実世界のLR画像の超解に失敗し、真の定式化は所定演算から逸脱する。
この問題に対処するために,画像システムのハードウェア知識を包含して未知の劣化過程をシミュレートする新しい教師あり手法を提案する。
教師あり学習フレームワークにおける適応的ぼかし層 (ABL) を設計し, 対象LR画像を推定する。
ABLのハイパーパラメータは、異なる撮像ハードウェアに対して調整することができる。
実世界のデータセットを用いた実験により, 劣化モデルが所定の劣化操作よりも高精度にlr画像を推定できること, また, 既存のsr法を用いて実世界のlr画像の再構成を従来よりも高精度に行えることを確認した。
関連論文リスト
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
トレーニング中、LR入力とHR画像の整列により、誤調整問題を緩和する新しいプラグアンドプレイモジュールを提案する。
具体的には,従来のLR試料の特徴を保ちながらHRと整合する新しいLR試料を模倣する。
本手法を合成および実世界のデータセット上で総合的に評価し,SRモデルのスペクトル間での有効性を実証した。
論文 参考訳(メタデータ) (2024-10-07T18:18:54Z) - Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
本研究は,SRモデルの現実の画像への適応性を高めるために,新しい"Low-Res Leads the Way"(LWay)トレーニングフレームワークを導入する。
提案手法では,低分解能(LR)再構成ネットワークを用いて,LR画像から劣化埋め込みを抽出し,LR再構成のための超解出力とマージする。
私たちのトレーニング体制は普遍的に互換性があり、ネットワークアーキテクチャの変更は不要です。
論文 参考訳(メタデータ) (2024-03-05T02:29:18Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
LRモデルとSRモデルに組み込んだ学習可能な適応正弦波非線形性を提案し,分解分布を直接学習する。
定量的および定性的な実験において提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-10-19T09:23:37Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
本研究では,制約のある事前知識を伴わずに未知のサンプル処理をシミュレートする手法を提案する。
対の例を使わずに対象LR画像の分布を模倣する汎用化可能な低周波損失(LFL)を提案する。
論文 参考訳(メタデータ) (2021-09-08T06:00:32Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
我々は,超解像残差畳み込み生成共役ネットワーク(SRResCGAN)を提案する。
これは、生成したLRドメインからHRドメインの画素単位の監督でモデルを逆トレーニングすることで、現実世界の劣化設定に従う。
提案するネットワークは,画像の高精細化と凸最適化によるエネルギーベース目的関数の最小化により,残差学習を利用する。
論文 参考訳(メタデータ) (2020-05-03T00:12:38Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。