Fault-tolerant qubit encoding using a spin-7/2 qudit
- URL: http://arxiv.org/abs/2303.02084v2
- Date: Wed, 24 May 2023 12:19:20 GMT
- Title: Fault-tolerant qubit encoding using a spin-7/2 qudit
- Authors: Sumin Lim, Junjie Liu, and Arzhang Ardavan
- Abstract summary: We propose a quantum memory, implemented on a spin-7/2 nucleus hyperfine-coupled to an electron spin-1/2 qubit.
Our encoding may be efficiently implemented in existing experimentally realised molecular electron-nuclear quantum spin systems.
- Score: 4.678423453820858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The implementation of error correction protocols is a central challenge in
the development of practical quantum information technologies. Recently,
multi-level quantum resources such as harmonic oscillators and qudits have
attracted interest in this context because they offer the possibility of
additional Hilbert space dimensions in a spatially compact way. Here we propose
a quantum memory, implemented on a spin-7/2 nucleus hyperfine-coupled to an
electron spin-1/2 qubit, which provides first order $X$, $Y$ and $Z$ error
correction using significantly fewer quantum resources than the equivalently
effective qubit-based protocols. Our encoding may be efficiently implemented in
existing experimentally realised molecular electron-nuclear quantum spin
systems. The strategy can be extended to higher-order error protection on
higher-spin nuclei.
Related papers
- Implementation of a scalable universal two-qubit quantum processor with electron and nuclear spins in a trapped ion [3.2872851729958867]
We propose a scalable n-ion-2n-qubit quantum processor utilizing four internal levels of each ion.
We experimentally implement a 1-ion-2-qubit universal processor using the electron spin and nuclear spin of a single 171Yb+ ion.
Our work paves the way towards achieving 2n-times increase in the size of quantum computational Hilbert space with n ions.
arXiv Detail & Related papers (2024-07-01T11:40:45Z) - Experimental demonstration of a fault-tolerant qubit encoded on a hyperfine-coupled qudit [4.720777561985926]
Protocols employing redundancy over multiple physical qubits to encode a single error-protected logical qubit are theoretically effective, but imply a large resource overhead.
Proposals have emerged for exploiting high-spin magnetic nuclei coupled to condensed matter electron spin qubits to implement fault-tolerant memories.
We implement the encoding using electron-nuclear double resonance within a subspace of the spin levels in an ensemble of highly coherent manganese defects in zinc oxide.
arXiv Detail & Related papers (2024-05-31T14:19:57Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - Hardware-efficient error-correcting codes for large nuclear spins [62.997667081978825]
We present a hardware-efficient quantum protocol that corrects phase flips of a nuclear spin using explicit experimentally feasible operations.
Results provide a realizable blueprint for a corrected spin-based qubit.
arXiv Detail & Related papers (2021-03-15T17:14:48Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.