論文の概要: Adversarial Attacks on Machine Learning in Embedded and IoT Platforms
- arxiv url: http://arxiv.org/abs/2303.02214v1
- Date: Fri, 3 Mar 2023 21:10:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-07 21:01:08.117604
- Title: Adversarial Attacks on Machine Learning in Embedded and IoT Platforms
- Title(参考訳): 組み込みおよびiotプラットフォームにおける機械学習の敵対的攻撃
- Authors: Christian Westbrook, Sudeep Pasricha
- Abstract要約: 本稿では、組み込みシステムに関連する敵攻撃とMLモデル圧縮技術の展望について概説する。
次に、この領域のオープンな問題を議論する前に、敵攻撃とMLモデル圧縮の関係を理解するための取り組みについて述べる。
- 参考スコア(独自算出の注目度): 4.226118870861363
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) algorithms are increasingly being integrated into
embedded and IoT systems that surround us, and they are vulnerable to
adversarial attacks. The deployment of these ML algorithms on resource-limited
embedded platforms also requires the use of model compression techniques. The
impact of such model compression techniques on adversarial robustness in ML is
an important and emerging area of research. This article provides an overview
of the landscape of adversarial attacks and ML model compression techniques
relevant to embedded systems. We then describe efforts that seek to understand
the relationship between adversarial attacks and ML model compression before
discussing open problems in this area.
- Abstract(参考訳): 機械学習(ml)アルゴリズムは、私たちを取り囲む組み込みおよびiotシステムにますます統合され、敵の攻撃に弱い。
これらのMLアルゴリズムをリソース限定の組み込みプラットフォームにデプロイするには、モデル圧縮技術を使用する必要がある。
このようなモデル圧縮技術がMLの対向ロバスト性に及ぼす影響は、重要かつ新たな研究分野である。
本稿では、組み込みシステムに関連する敵攻撃とMLモデル圧縮技術の展望について概説する。
次に、この領域のオープンな問題を議論する前に、敵攻撃とMLモデル圧縮の関係を理解するための取り組みについて述べる。
関連論文リスト
- SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
我々は、複合AIシステムに適用可能な、異なるソフトウェアとハードウェアの攻撃について議論する。
複数の攻撃機構を組み合わせることで、孤立攻撃に必要な脅威モデル仮定をいかに削減できるかを示す。
論文 参考訳(メタデータ) (2024-11-20T17:08:38Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Enhancing ML-Based DoS Attack Detection Through Combinatorial Fusion
Analysis [2.7973964073307265]
サービス拒否(DoS)攻撃の緩和は、オンラインサービスのセキュリティと可用性にとって不可欠である。
先進的なアルゴリズムを用いて複数のMLモデルを組み合わせた,革新的な融合法を提案する。
本研究は,DoS攻撃の検出を改良し,防御機構の強化に寄与する手法の可能性を強調した。
論文 参考訳(メタデータ) (2023-10-02T02:21:48Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Attacks in Adversarial Machine Learning: A Systematic Survey from the
Life-cycle Perspective [69.25513235556635]
敵対的機械学習(英: Adversarial Machine Learning、AML)は、機械学習の逆行現象を研究する。
機械学習システムの異なる段階で発生するこの敵対現象を探求するために、いくつかのパラダイムが最近開発された。
既存の攻撃パラダイムをカバーするための統一的な数学的枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-19T02:12:21Z) - Threat Assessment in Machine Learning based Systems [12.031113181911627]
我々は機械学習に基づくシステムに対して報告された脅威を実証研究する。
この研究は、MITREのATLASデータベース、AIインシデントデータベース、および文学からの89の現実世界のML攻撃シナリオに基づいている。
その結果,畳み込みニューラルネットワークは攻撃シナリオの中でも最も標的となるモデルの一つであることがわかった。
論文 参考訳(メタデータ) (2022-06-30T20:19:50Z) - Attacks, Defenses, And Tools: A Framework To Facilitate Robust AI/ML
Systems [2.5137859989323528]
ソフトウェアシステムは、人工知能(AI)と機械学習(ML)コンポーネントにますます依存している。
本稿では,AI対応システムに関連する攻撃や弱点を特徴付ける枠組みを提案する。
論文 参考訳(メタデータ) (2022-02-18T22:54:04Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
フェデレーテッド・ラーニング(FL)はパラメータ伝達中にFLモデルに対する外部攻撃に対して脆弱である。
本稿では,最先端の防御アグリゲーション機構に対処する有効なMPアルゴリズムを提案する。
実験の結果,提案したCMPアルゴリズムは,既存の攻撃機構よりも効果的で,かなり優れていることが示された。
論文 参考訳(メタデータ) (2021-01-28T03:28:18Z) - ConAML: Constrained Adversarial Machine Learning for Cyber-Physical
Systems [7.351477761427584]
サイバー物理システムに適用された機械学習の潜在的な脆弱性について検討する。
本稿では,本システム固有の制約を満たす逆例を生成するConstrained Adversarial Machine Learning (ConAML)を提案する。
論文 参考訳(メタデータ) (2020-03-12T05:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。