論文の概要: Enhancing ML-Based DoS Attack Detection Through Combinatorial Fusion
Analysis
- arxiv url: http://arxiv.org/abs/2312.00006v1
- Date: Mon, 2 Oct 2023 02:21:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 15:09:18.959784
- Title: Enhancing ML-Based DoS Attack Detection Through Combinatorial Fusion
Analysis
- Title(参考訳): 組合せ核融合解析によるMLベースのDoS検出の強化
- Authors: Evans Owusu, Mohamed Rahouti, D. Frank Hsu, Kaiqi Xiong, Yufeng Xin
- Abstract要約: サービス拒否(DoS)攻撃の緩和は、オンラインサービスのセキュリティと可用性にとって不可欠である。
先進的なアルゴリズムを用いて複数のMLモデルを組み合わせた,革新的な融合法を提案する。
本研究は,DoS攻撃の検出を改良し,防御機構の強化に寄与する手法の可能性を強調した。
- 参考スコア(独自算出の注目度): 2.7973964073307265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mitigating Denial-of-Service (DoS) attacks is vital for online service
security and availability. While machine learning (ML) models are used for DoS
attack detection, new strategies are needed to enhance their performance. We
suggest an innovative method, combinatorial fusion, which combines multiple ML
models using advanced algorithms. This includes score and rank combinations,
weighted techniques, and diversity strength of scoring systems. Through
rigorous evaluations, we demonstrate the effectiveness of this fusion approach,
considering metrics like precision, recall, and F1-score. We address the
challenge of low-profiled attack classification by fusing models to create a
comprehensive solution. Our findings emphasize the potential of this approach
to improve DoS attack detection and contribute to stronger defense mechanisms.
- Abstract(参考訳): サービス拒否(DoS)攻撃の緩和は、オンラインサービスのセキュリティと可用性にとって不可欠である。
機械学習(ML)モデルがDoS攻撃検出に使用される一方で、パフォーマンスを高めるためには新たな戦略が必要である。
先進的なアルゴリズムを用いて複数のMLモデルを組み合わせた,革新的な組合せ融合法を提案する。
これにはスコアとランクの組み合わせ、重み付けされたテクニック、スコアリングシステムの多様性の強さが含まれる。
厳密な評価を通じて,精度,リコール,f1-scoreなどの指標を考慮して,この融合手法の有効性を実証する。
我々は,モデルを用いて包括的ソリューションを構築することで,低プロファイル攻撃分類の課題に対処した。
本研究は,DoS攻撃の検出能力の向上と防御機構の強化に寄与する可能性を強調した。
関連論文リスト
- Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques [0.0]
本研究では,機械学習(ML)と深層学習(DL)技術を組み合わせて,ネットワーク侵入検知システム(NIDS)を改善する方法について検討する。
この研究は、CSE-CIC-IDS 2018とLITNET-2020データセットを使用して、MLメソッド(決定木、ランダムフォレスト、XGBoost)とDLモデル(CNN、RNN、DNN)を主要なパフォーマンス指標と比較する。
Decision Treeモデルでは、EPSO(Enhanced Particle Swarm Optimization)を微調整して、ネットワーク違反を効果的に検出する能力を実証した。
論文 参考訳(メタデータ) (2024-08-14T17:11:36Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
大規模言語モデル(LLM)は敵の脅威に対して脆弱である。
本稿では, LLM へのホワイトボックスアクセスを前提とした, 革新的な防御戦略を提案する。
そこで本研究では,アタックプロンプト分類のための残差ストリームの固有なアクティベーションパターンを解析するための新しい手法を適用した。
論文 参考訳(メタデータ) (2024-06-05T13:06:33Z) - MISLEAD: Manipulating Importance of Selected features for Learning Epsilon in Evasion Attack Deception [0.35998666903987897]
回避攻撃は入力データに正確な摂動を導入してモデルを操作し、誤った予測を引き起こす。
私たちのアプローチは、モデル脆弱性を理解するためのSHAPベースの分析から始まり、ターゲットの回避戦略の考案に不可欠です。
バイナリ探索アルゴリズムを用いた最適エプシロン法は,回避に要する最小エプシロンを効率的に決定する。
論文 参考訳(メタデータ) (2024-04-24T05:22:38Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Evaluating and Improving Adversarial Robustness of Machine
Learning-Based Network Intrusion Detectors [21.86766733460335]
本研究では,ML ベースの NIDS のロバスト性を評価するため,グレー/ブラックボックスのトラフィック空間攻撃に関する最初の系統的研究を行った。
私たちの仕事は、以下の点で以前のものより優れています。
また,システムロバスト性を改善するために,敵攻撃に対する防御策を提案する。
論文 参考訳(メタデータ) (2020-05-15T13:06:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。