Modular Safety-Critical Control of Legged Robots
- URL: http://arxiv.org/abs/2303.02386v1
- Date: Sat, 4 Mar 2023 11:36:21 GMT
- Title: Modular Safety-Critical Control of Legged Robots
- Authors: Berk Tosun and Evren Samur
- Abstract summary: Safety concerns during the operation of legged robots must be addressed to enable their widespread use.
This study presents a modular safety filter to improve the safety of a legged robot, i.e., reduce the chance of a fall.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety concerns during the operation of legged robots must be addressed to
enable their widespread use. Machine learning-based control methods that use
model-based constraints provide promising means to improve robot safety. This
study presents a modular safety filter to improve the safety of a legged robot,
i.e., reduce the chance of a fall. The prerequisite is the availability of a
robot that is capable of locomotion, i.e., a nominal controller exists. During
locomotion, terrain properties around the robot are estimated through machine
learning which uses a minimal set of proprioceptive signals. A novel
deep-learning model utilizing an efficient transformer architecture is used for
the terrain estimation. A quadratic program combines the terrain estimations
with inverse dynamics and a novel exponential control barrier function
constraint to filter and certify nominal control signals. The result is an
optimal controller that acts as a filter. The filtered control signal allows
safe locomotion of the robot. The resulting approach is generalizable, and
could be transferred with low effort to any other legged system.
Related papers
- Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
We present an approach for overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level.
Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion.
arXiv Detail & Related papers (2023-03-07T08:16:46Z) - Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion [25.35885216505385]
An attached arm can significantly increase the applicability of legged robots to mobile manipulation tasks.
Standard hierarchical control pipeline for such legged manipulators is to decouple the controller into that of manipulation and locomotion.
We learn a unified policy for whole-body control of a legged manipulator using reinforcement learning.
arXiv Detail & Related papers (2022-10-18T17:59:30Z) - High-Speed Accurate Robot Control using Learned Forward Kinodynamics and
Non-linear Least Squares Optimization [42.92648945058518]
The dependence of the movement of the robot on kinodynamic interactions becomes more pronounced at high speeds.
Previous work has shown that learning the inverse kinodynamic model can be helpful for high-speed robot control.
We present a new formulation for accurate, high-speed robot control that makes use of a learned forward kinodynamic (FKD) model and non-linear least squares optimization.
arXiv Detail & Related papers (2022-06-16T23:52:01Z) - Agile Maneuvers in Legged Robots: a Predictive Control Approach [20.55884151818753]
We present a contact-phase predictive and state-feedback controllers that enables legged robots to plan and perform agile locomotion skills.
Our work is the first to show that predictive control can handle actuation limits, generate agile locomotion maneuvers and execute locally optimal feedback policies on hardware without the use of a separate whole-body controller.
arXiv Detail & Related papers (2022-03-14T23:32:17Z) - A Transferable Legged Mobile Manipulation Framework Based on Disturbance
Predictive Control [15.044159090957292]
Legged mobile manipulation, where a quadruped robot is equipped with a robotic arm, can greatly enhance the performance of the robot.
We propose a unified framework disturbance predictive control where a reinforcement learning scheme with a latent dynamic adapter is embedded into our proposed low-level controller.
arXiv Detail & Related papers (2022-03-02T14:54:10Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning [85.13138591433635]
The main drawbacks of input-output linearizing controllers are the need for precise dynamics models and not being able to account for input constraints.
In this paper, we address both challenges for the specific case of bipedal robot control by the use of reinforcement learning techniques.
arXiv Detail & Related papers (2020-04-15T18:15:49Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
We present a framework for implementing central pattern generators with spiking neural networks to obtain closed loop robot control.
We demonstrate the learning of predefined gait patterns, speed control and gait transition on a simulated model of a compliant quadrupedal robot.
arXiv Detail & Related papers (2020-04-09T14:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.