Few-Shot Defect Image Generation via Defect-Aware Feature Manipulation
- URL: http://arxiv.org/abs/2303.02389v1
- Date: Sat, 4 Mar 2023 11:43:08 GMT
- Title: Few-Shot Defect Image Generation via Defect-Aware Feature Manipulation
- Authors: Yuxuan Duan, Yan Hong, Li Niu, Liqing Zhang
- Abstract summary: We propose the first defect image generation method in the challenging few-shot cases.
Our method consists of two training stages. First, we train a data-efficient StyleGAN2 on defect-free images as the backbone.
Second, we attach defect-aware residual blocks to the backbone, which learn to produce reasonable defect masks.
- Score: 19.018561017953957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performances of defect inspection have been severely hindered by
insufficient defect images in industries, which can be alleviated by generating
more samples as data augmentation. We propose the first defect image generation
method in the challenging few-shot cases. Given just a handful of defect images
and relatively more defect-free ones, our goal is to augment the dataset with
new defect images. Our method consists of two training stages. First, we train
a data-efficient StyleGAN2 on defect-free images as the backbone. Second, we
attach defect-aware residual blocks to the backbone, which learn to produce
reasonable defect masks and accordingly manipulate the features within the
masked regions by training the added modules on limited defect images.
Extensive experiments on MVTec AD dataset not only validate the effectiveness
of our method in generating realistic and diverse defect images, but also
manifest the benefits it brings to downstream defect inspection tasks. Codes
are available at https://github.com/Ldhlwh/DFMGAN.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Few-shot Defect Image Generation based on Consistency Modeling [1.8029094254659288]
DefectDiffu is a novel text-guided diffusion method to model defect consistency across multiple products.
We show that DefectDiffu surpasses state-of-the-art methods in terms of generation quality and diversity.
arXiv Detail & Related papers (2024-08-01T08:29:42Z) - Progressive Alignment with VLM-LLM Feature to Augment Defect Classification for the ASE Dataset [7.1083241462091165]
Traditional defect classification approaches are facing with two barriers.
Insufficient training data and unstable data quality.
We propose the special dataset, including rich data description recorded on image, for defect classification, but the defect feature is uneasy to learn directly.
arXiv Detail & Related papers (2024-04-08T04:17:27Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
We propose a transformer network with multi-stage CNN feature injection for surface defect segmentation.
CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder.
In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects.
arXiv Detail & Related papers (2023-09-22T06:12:02Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - Reference-based Defect Detection Network [57.89399576743665]
The first issue is the texture shift which means a trained defect detector model will be easily affected by unseen texture.
The second issue is partial visual confusion which indicates that a partial defect box is visually similar with a complete box.
We propose a Reference-based Defect Detection Network (RDDN) to tackle these two problems.
arXiv Detail & Related papers (2021-08-10T05:44:23Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Defect-GAN: High-Fidelity Defect Synthesis for Automated Defect
Inspection [34.699695525216185]
Defect-GAN is an automated defect synthesis network that generates realistic and diverse defect samples.
It learns through defacement and restoration processes, where the defacement generates defects on normal surface images.
It can also mimic variations of defects and offer flexible control over the locations and categories of the generated defects.
arXiv Detail & Related papers (2021-03-28T15:53:34Z) - Computer Vision and Normalizing Flow Based Defect Detection [0.0]
We present a two-stage defect detection network based on the object detection model YOLO, and the normalizing flow-based defect detection model DifferNet.
Our model has high robustness and performance on defect detection using real-world video clips taken from a production line monitoring system.
Our proposed model can learn on a small number of defect-free samples of single or multiple product types.
arXiv Detail & Related papers (2020-12-12T05:38:21Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
We propose a reusable sample selection and correction approach, termed as CRSSC, for coping with label noise in training deep FG models with web images.
Our key idea is to additionally identify and correct reusable samples, and then leverage them together with clean examples to update the networks.
arXiv Detail & Related papers (2020-08-06T02:07:21Z) - Few-Shot Defect Segmentation Leveraging Abundant Normal Training Samples
Through Normal Background Regularization and Crop-and-Paste Operation [4.626338154327536]
In industrial inspection tasks, it is common to capture abundant defect-free image samples but very limited anomalous ones.
This paper tackles the challenging few-shot defect segmentation task with sufficient normal (defect-free) training images but very few anomalous ones.
We present two effective regularization techniques via incorporating abundant defect-free images into the training of a UNet-like encoder-decoder defect segmentation network.
arXiv Detail & Related papers (2020-07-18T14:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.