The kinetic Hamiltonian with position-dependent mass
- URL: http://arxiv.org/abs/2303.02507v1
- Date: Sat, 4 Mar 2023 21:23:42 GMT
- Title: The kinetic Hamiltonian with position-dependent mass
- Authors: R.M. Lima and H.R. Christiansen
- Abstract summary: We examine in a systematic way the most relevant orderings of pure kinetic Hamiltonians for five different position-dependent mass profiles.
As a result of the non-commutativity between momentum and position operators, a diversity of effective potentials is generated.
We obtain analytically the full-spectrum of energies and solutions in the twenty-five cases considered.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the present paper we examine in a systematic way the most relevant
orderings of pure kinetic Hamiltonians for five different position-dependent
mass (PDM) profiles: soliton-like, reciprocal quadratic and biquadratic,
exponential and parabolic. As a result of the non-commutativity between
momentum and position operators, a diversity of effective potentials is
generated. We analyze the whole set and find unexpected coincidences as well as
discrepancies among them. We obtain analytically the full-spectrum of energies
and solutions in the twenty-five cases considered. It is shown how the simple
ordinary constant-mass solutions are transformed into a variety of complex
combinations of transcendental functions and arguments. We find that particles
with a non-uniform mass density can present discrete energy spectra as well as
continuous ones which can be bounded or not. These results are consistent with
the fact that although the external potential is zero, PDM eigenfunctions are
not actual free states but a sort of effective waves in a solid-state sample.
This is precisely the origin of the position-dependent mass. In all the events
we obtain exact complete spectral expressions. Our methodological procedure
thus puts a wide diversity of Hamiltonian seeds on an equal footing in order to
be compared. This allows choosing the better arrangement to model a specific
solid or heterostructure once the spectrum of a given material is
experimentally available. Finally, we perform a one-dimensional model
calculation of a double heterostructure with a parabolic PDM particle in the
interface region. Our study is also indicated for applications inside material
structures with the addition of external potentials.
Related papers
- Nonlocal order parameter of pair superfluids [0.196629787330046]
We show that pair superfluids can be rigorously defined in terms of a nonlocal order parameter, named odd parity.
Our results shed new light on the role of correlated density fluctuations in pair superfluids.
arXiv Detail & Related papers (2024-04-24T16:45:43Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Entangled Collective Spin States of Two Species Ultracold atoms in a
Ring [0.0]
We study the general quantum Hamiltonian that can be realized with two species of degenerate ultracold atoms in a ring-shaped trap.
We examine the spectrum and the states with a collective spin picture in a Dicke state basis.
The density of states for the full Hamiltonian shows features as of phase transition in varying between linear and quadratic limits.
arXiv Detail & Related papers (2023-03-15T04:11:59Z) - Non-Hermitian fermions with effective mass [0.0]
In seeking a Schr"odinger-like theory with PT symmetry is appropriate to assume a complex potential.
In seeking a Schr"odinger-like theory with PT symmetry is appropriate to assume a complex potential.
arXiv Detail & Related papers (2023-02-09T15:45:01Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Angular Momentum Eigenstates of the Isotropic 3-D Harmonic Oscillator:
Phase-Space Distributions and Coalescence Probabilities [0.0]
We compute the probabilities for coalescence of two distinguishable, non-relativistic particles into a bound state.
We use a phase-space formulation and hence need the Wigner distribution functions of angular momentum eigenstates.
arXiv Detail & Related papers (2021-12-22T23:16:44Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Alternative quantisation condition for wavepacket dynamics in a
hyperbolic double well [0.0]
We propose an analytical approach for computing the eigenspectrum and corresponding eigenstates of a hyperbolic double well potential of arbitrary height or width.
Considering initial wave packets of different widths and peak locations, we compute autocorrelation functions and quasiprobability distributions.
arXiv Detail & Related papers (2020-09-18T10:29:04Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.