A simple formulation of no-cloning and no-hiding that admits efficient
and robust verification
- URL: http://arxiv.org/abs/2303.02662v2
- Date: Mon, 29 May 2023 06:41:02 GMT
- Title: A simple formulation of no-cloning and no-hiding that admits efficient
and robust verification
- Authors: Matthew Girling, Cristina Cirstoiu, David Jennings
- Abstract summary: Incompatibility is a feature of quantum theory that sets it apart from classical theory.
The no-hiding theorem is another such instance that arises in the context of the black-hole information paradox.
We formulate both of these fundamental features of quantum theory in a single form that is amenable to efficient verification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incompatibility is a feature of quantum theory that sets it apart from
classical theory, and the inability to clone an unknown quantum state is one of
the most fundamental instances. The no-hiding theorem is another such instance
that arises in the context of the black-hole information paradox, and can be
viewed as being dual to no-cloning. Here, we formulate both of these
fundamental features of quantum theory in a single form that is amenable to
efficient verification, and that is robust to errors arising in state
preparation and measurements. We extend the notion of unitarity - an average
figure of merit that for quantum theory captures the coherence of a quantum
channel - to general physical theories. Then, we introduce the notion of
compatible unitarity pair (CUP) sets, that correspond to the allowed values of
unitarities for compatible channels in the theory. We show that a CUP-set
constitutes a simple 'fingerprint' of a physical theory, and that
incompatibility can be studied through them. We derive information-disturbance
constraints on quantum CUP-sets that encode both the no-cloning/broadcasting
and no-hiding theorems of quantum theory. We then develop randomised
benchmarking protocols that efficiently estimate quantum CUP-sets and provide
simulations using IBMQ of the simplest instance. Finally, we discuss ways in
which CUP-sets and quantum no-go theorems could provide additional information
to benchmark quantum devices.
Related papers
- Universal quantum computation using Ising anyons from a non-semisimple Topological Quantum Field Theory [0.058331173224054456]
We propose a framework for topological quantum computation using newly discovered non-semisimple analogs of topological quantum field theories in 2+1 dimensions.
We show that the non-semisimple theory introduces new anyon types that extend the Ising framework.
arXiv Detail & Related papers (2024-10-18T21:03:07Z) - Quantum Theory Needs (And Probably Has) Real Reduction [0.0]
It appears that for quantum theory to be viable in a realist sense, it must possess genuine, physical non-unitarity.
Penrose's theory of gravitation-induced collapse and the Transactional Interpretation are discussed.
arXiv Detail & Related papers (2023-04-20T21:25:23Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Testing quantum theory by generalizing noncontextuality [0.0]
We prove that only Jordan-algebraic state spaces are exactly embeddable into quantum theory.
We propose an experimental test of quantum theory by probing single physical systems.
arXiv Detail & Related papers (2021-12-17T19:00:24Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - One-shot quantum error correction of classical and quantum information [10.957528713294874]
Quantum error correction (QEC) is one of the central concepts in quantum information science.
We provide a form of capacity theorem for both classical and quantum information.
We show that a demonstration of QEC by short random quantum circuits is feasible.
arXiv Detail & Related papers (2020-11-02T01:24:59Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.