論文の概要: Mining both Commonality and Specificity from Multiple Documents for
Multi-Document Summarization
- arxiv url: http://arxiv.org/abs/2303.02677v1
- Date: Sun, 5 Mar 2023 14:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-07 18:14:04.837816
- Title: Mining both Commonality and Specificity from Multiple Documents for
Multi-Document Summarization
- Title(参考訳): 多文書要約のための複数文書からの共通性と特異性の両方のマイニング
- Authors: Bing Ma
- Abstract要約: 多文書要約タスクでは、設計した要約者が、原文書の重要な情報をカバーする短いテキストを生成する必要がある。
本稿では,文書の階層的クラスタリングに基づくマルチドキュメント要約手法を提案する。
- 参考スコア(独自算出の注目度): 1.4629756274247374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The multi-document summarization task requires the designed summarizer to
generate a short text that covers the important information of original
documents and satisfies content diversity. This paper proposes a multi-document
summarization approach based on hierarchical clustering of documents. It
utilizes the constructed class tree of documents to extract both the sentences
reflecting the commonality of all documents and the sentences reflecting the
specificity of some subclasses of these documents for generating a summary, so
as to satisfy the coverage and diversity requirements of multi-document
summarization. Comparative experiments with different variant approaches on
DUC'2002-2004 datasets prove the effectiveness of mining both the commonality
and specificity of documents for multi-document summarization. Experiments on
DUC'2004 and Multi-News datasets show that our approach achieves competitive
performance compared to the state-of-the-art unsupervised and supervised
approaches.
- Abstract(参考訳): マルチドキュメント要約タスクでは、設計した要約者がオリジナルの文書の重要な情報をカバーし、コンテンツの多様性を満たす短いテキストを生成する必要がある。
本稿では,階層的な文書クラスタリングに基づく多文書要約手法を提案する。
全文書の共通性を反映した文と、これらの文書のいくつかのサブクラスの特異性を反映した文の両方を抽出して要約を作成し、多文書要約のカバー範囲と多様性の要件を満たす。
DUC'2002-2004データセットの異なる変種アプローチによる比較実験は、文書の共通性と特異性の両方を多文書要約のためにマイニングする効果を証明している。
DUC'2004とMulti-Newsのデータセットを用いた実験により、我々の手法は最先端の教師なしおよび教師なしのアプローチと比較して競争性能が向上することを示した。
関連論文リスト
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
我々は、異なるモダリティでインターリーブされた文書を均等に埋め込み、より包括的でニュアンスのある文書表現を生成する。
具体的には、テキスト、画像、テーブルの処理と統合を統一されたフォーマットと表現に統合する、近年のビジョン言語モデルの能力を活用して、これを実現する。
論文 参考訳(メタデータ) (2024-10-03T17:49:09Z) - Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
GRADed Generative Retrieval (GR$2$)というフレームワークを紹介します。
GR$2$は2つの重要なコンポーネントに焦点を当てている。
マルチグレードとバイナリの関連性を持つデータセットの実験は,GR$2$の有効性を示した。
論文 参考訳(メタデータ) (2024-09-27T02:55:53Z) - Leveraging Collection-Wide Similarities for Unsupervised Document Structure Extraction [61.998789448260005]
本稿では,コレクション内の文書の典型的構造を特定することを提案する。
任意のヘッダのパラフレーズを抽象化し、各トピックを各ドキュメントのロケーションにグルーピングします。
文書間の類似性を利用した教師なしグラフベース手法を開発した。
論文 参考訳(メタデータ) (2024-02-21T16:22:21Z) - Unsupervised Multi-document Summarization with Holistic Inference [41.58777650517525]
本稿では,教師なし多文書抽出要約のための新しい総合的枠組みを提案する。
サブセット代表指数(SRI)は、原文からの文のサブセットの重要性と多様性のバランスをとる。
その結果,多文書要約性能の向上には多様性が不可欠であることが示唆された。
論文 参考訳(メタデータ) (2023-09-08T02:56:30Z) - PDSum: Prototype-driven Continuous Summarization of Evolving
Multi-document Sets Stream [33.68263291948121]
我々は,新たな要約問題であるマルチドキュメントセットストリーム要約(EMDS)を提案する。
本稿では,プロトタイプ駆動連続要約のアイデアを取り入れた新しい教師なしアルゴリズムPDSumを紹介する。
PDSumは、各マルチドキュメントセットの軽量プロトタイプを構築し、それを利用して、新しいドキュメントに適応する。
論文 参考訳(メタデータ) (2023-02-10T23:43:46Z) - Large-Scale Multi-Document Summarization with Information Extraction and
Compression [31.601707033466766]
複数の異種文書のラベル付きデータとは無関係に抽象的な要約フレームワークを開発する。
我々のフレームワークは、同じトピックのドキュメントではなく、異なるストーリーを伝えるドキュメントを処理する。
我々の実験は、このより汎用的な設定において、我々のフレームワークが現在の最先端メソッドより優れていることを示した。
論文 参考訳(メタデータ) (2022-05-01T19:49:15Z) - Unsupervised Summarization with Customized Granularities [76.26899748972423]
本稿では,最初の教師なし多粒度要約フレームワークであるGranuSumを提案する。
異なる数のイベントを入力することで、GranuSumは教師なしの方法で複数の粒度のサマリーを生成することができる。
論文 参考訳(メタデータ) (2022-01-29T05:56:35Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
単一文書の要約と多文書の要約の重大な違いは、文書の中で健全なコンテンツがどのように現れるかである。
本稿では,複数文書要約における文書間補完効果とその活用をモデル化する。
提案手法は各文書から合成を生成し,他の文書から有意な内容を識別する支援者として機能する。
論文 参考訳(メタデータ) (2021-10-15T03:55:42Z) - Multilevel Text Alignment with Cross-Document Attention [59.76351805607481]
既存のアライメントメソッドは、1つの事前定義されたレベルで動作します。
本稿では,文書を文書間注目要素で表現するための階層的アテンションエンコーダを予め確立した新しい学習手法を提案する。
論文 参考訳(メタデータ) (2020-10-03T02:52:28Z) - SummPip: Unsupervised Multi-Document Summarization with Sentence Graph
Compression [61.97200991151141]
SummPipはマルチドキュメント要約のための教師なしの手法である。
元の文書を文グラフに変換し、言語表現と深層表現の両方を考慮に入れます。
次に、スペクトルクラスタリングを適用して複数の文のクラスタを取得し、最後に各クラスタを圧縮して最終的な要約を生成する。
論文 参考訳(メタデータ) (2020-07-17T13:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。