論文の概要: Unsupervised Multi-document Summarization with Holistic Inference
- arxiv url: http://arxiv.org/abs/2309.04087v1
- Date: Fri, 8 Sep 2023 02:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 16:15:42.694724
- Title: Unsupervised Multi-document Summarization with Holistic Inference
- Title(参考訳): 包括的推論を用いた教師なしマルチドキュメント要約
- Authors: Haopeng Zhang, Sangwoo Cho, Kaiqiang Song, Xiaoyang Wang, Hongwei
Wang, Jiawei Zhang and Dong Yu
- Abstract要約: 本稿では,教師なし多文書抽出要約のための新しい総合的枠組みを提案する。
サブセット代表指数(SRI)は、原文からの文のサブセットの重要性と多様性のバランスをとる。
その結果,多文書要約性能の向上には多様性が不可欠であることが示唆された。
- 参考スコア(独自算出の注目度): 41.58777650517525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-document summarization aims to obtain core information from a
collection of documents written on the same topic. This paper proposes a new
holistic framework for unsupervised multi-document extractive summarization.
Our method incorporates the holistic beam search inference method associated
with the holistic measurements, named Subset Representative Index (SRI). SRI
balances the importance and diversity of a subset of sentences from the source
documents and can be calculated in unsupervised and adaptive manners. To
demonstrate the effectiveness of our method, we conduct extensive experiments
on both small and large-scale multi-document summarization datasets under both
unsupervised and adaptive settings. The proposed method outperforms strong
baselines by a significant margin, as indicated by the resulting ROUGE scores
and diversity measures. Our findings also suggest that diversity is essential
for improving multi-document summary performance.
- Abstract(参考訳): マルチドキュメント要約は、同じトピックに書かれた文書の集合からコア情報を取得することを目的としている。
本稿では,教師なしマルチドキュメント抽出要約のための新しい包括的フレームワークを提案する。
本手法は,集合代表索引 (sri) と呼ばれる包括的計測に関連付けられた包括的ビーム探索法を組み込んだものである。
SRIは、ソース文書から文のサブセットの重要性と多様性をバランスさせ、教師なしかつ適応的な方法で計算することができる。
提案手法の有効性を実証するために,教師なしおよび適応的両方の設定下で,小規模および大規模マルチドキュメント要約データセットについて広範な実験を行った。
提案手法は,ROUGEのスコアと多様性の指標によって示されるように,強いベースラインを顕著なマージンで上回る。
また,多文書要約性能の向上には多様性が不可欠であることが示唆された。
関連論文リスト
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
我々は、異なるモダリティでインターリーブされた文書を均等に埋め込み、より包括的でニュアンスのある文書表現を生成する。
具体的には、テキスト、画像、テーブルの処理と統合を統一されたフォーマットと表現に統合する、近年のビジョン言語モデルの能力を活用して、これを実現する。
論文 参考訳(メタデータ) (2024-10-03T17:49:09Z) - Supervising the Centroid Baseline for Extractive Multi-Document
Summarization [2.0306707203430348]
セントロイド法は抽出多文書要約の簡単な方法である。
文選択にビームサーチプロセスを加えて改良し、さらにセントロイド推定アテンションモデルを適用して改善した。
論文 参考訳(メタデータ) (2023-11-29T16:11:45Z) - PELMS: Pre-training for Effective Low-Shot Multi-Document Summarization [4.6493060043204535]
PELMSは,簡潔で流動的で忠実な要約を生成する事前学習モデルである。
我々は9300万以上のドキュメントを含むマルチドキュメント事前学習コーパスであるMultiPTをコンパイルし、300万以上の未ラベルのトピック中心のドキュメントクラスタを形成する。
我々のアプローチは、全体的な情報性、抽象性、一貫性、忠実性に関して、競争比較を一貫して上回る。
論文 参考訳(メタデータ) (2023-11-16T12:05:23Z) - Mining both Commonality and Specificity from Multiple Documents for
Multi-Document Summarization [1.4629756274247374]
多文書要約タスクでは、設計した要約者が、原文書の重要な情報をカバーする短いテキストを生成する必要がある。
本稿では,文書の階層的クラスタリングに基づくマルチドキュメント要約手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T14:25:05Z) - ACM -- Attribute Conditioning for Abstractive Multi Document
Summarization [0.0]
本稿では,属性条件付きモジュールを組み込んだモデルを提案する。
このアプローチは、ベースラインのマルチドキュメント要約アプローチよりもROUGEスコアが大きく向上することを示している。
論文 参考訳(メタデータ) (2022-05-09T00:00:14Z) - Unsupervised Summarization with Customized Granularities [76.26899748972423]
本稿では,最初の教師なし多粒度要約フレームワークであるGranuSumを提案する。
異なる数のイベントを入力することで、GranuSumは教師なしの方法で複数の粒度のサマリーを生成することができる。
論文 参考訳(メタデータ) (2022-01-29T05:56:35Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
単一文書の要約と多文書の要約の重大な違いは、文書の中で健全なコンテンツがどのように現れるかである。
本稿では,複数文書要約における文書間補完効果とその活用をモデル化する。
提案手法は各文書から合成を生成し,他の文書から有意な内容を識別する支援者として機能する。
論文 参考訳(メタデータ) (2021-10-15T03:55:42Z) - PoBRL: Optimizing Multi-Document Summarization by Blending Reinforcement
Learning Policies [68.8204255655161]
マルチドキュメントの要約を解くための強化学習ベースのフレームワーク PoBRL を提案する。
私たちの戦略は、この多対象最適化を、強化学習によって個別に解決できるさまざまなサブ問題に分離します。
実験結果から,複数のマルチドキュメントデータセットにおける最先端の性能を示す。
論文 参考訳(メタデータ) (2021-05-18T02:55:42Z) - SupMMD: A Sentence Importance Model for Extractive Summarization using
Maximum Mean Discrepancy [92.5683788430012]
SupMMDは、カーネルの2サンプルテストと最大の相違点に基づく、ジェネリックおよび更新の要約のための新しいテクニックである。
DUC-2004 および TAC-2009 データセット上での現在の技術状況を満たしたり超えたりすることで,SupMMD の総合的および更新的要約タスクにおける有効性を示す。
論文 参考訳(メタデータ) (2020-10-06T09:26:55Z) - SummPip: Unsupervised Multi-Document Summarization with Sentence Graph
Compression [61.97200991151141]
SummPipはマルチドキュメント要約のための教師なしの手法である。
元の文書を文グラフに変換し、言語表現と深層表現の両方を考慮に入れます。
次に、スペクトルクラスタリングを適用して複数の文のクラスタを取得し、最後に各クラスタを圧縮して最終的な要約を生成する。
論文 参考訳(メタデータ) (2020-07-17T13:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。