Improved Sample Complexity Bounds for Distributionally Robust
Reinforcement Learning
- URL: http://arxiv.org/abs/2303.02783v2
- Date: Sat, 20 May 2023 22:40:26 GMT
- Title: Improved Sample Complexity Bounds for Distributionally Robust
Reinforcement Learning
- Authors: Zaiyan Xu, Kishan Panaganti, Dileep Kalathil
- Abstract summary: We consider the problem of learning a control policy that is robust against the parameter mismatches between the training environment and testing environment.
We propose the Robust Phased Value Learning (RPVL) algorithm to solve this problem for the uncertainty sets specified by four different divergences.
We show that our algorithm achieves $tildemathcalO(|mathcalSmathcalA| H5)$ sample complexity, which is uniformly better than the existing results.
- Score: 3.222802562733787
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We consider the problem of learning a control policy that is robust against
the parameter mismatches between the training environment and testing
environment. We formulate this as a distributionally robust reinforcement
learning (DR-RL) problem where the objective is to learn the policy which
maximizes the value function against the worst possible stochastic model of the
environment in an uncertainty set. We focus on the tabular episodic learning
setting where the algorithm has access to a generative model of the nominal
(training) environment around which the uncertainty set is defined. We propose
the Robust Phased Value Learning (RPVL) algorithm to solve this problem for the
uncertainty sets specified by four different divergences: total variation,
chi-square, Kullback-Leibler, and Wasserstein. We show that our algorithm
achieves $\tilde{\mathcal{O}}(|\mathcal{S}||\mathcal{A}| H^{5})$ sample
complexity, which is uniformly better than the existing results by a factor of
$|\mathcal{S}|$, where $|\mathcal{S}|$ is number of states, $|\mathcal{A}|$ is
the number of actions, and $H$ is the horizon length. We also provide the
first-ever sample complexity result for the Wasserstein uncertainty set.
Finally, we demonstrate the performance of our algorithm using simulation
experiments.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Large-Scale Non-convex Stochastic Constrained Distributionally Robust Optimization [23.029511473335145]
This paper focuses on constrained DRO, which has an explicit characterization of the robustness of its performance.
The complexity of our algorithm at each $chi2$-divergences point$ is independent overall dataset size, and thus is suitable for large-scale applications.
arXiv Detail & Related papers (2024-04-01T15:56:58Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Sample Complexity of Variance-reduced Distributionally Robust Q-learning [17.96094201655567]
This paper presents two novel model-free algorithms, namely the distributionally robust Q-learning and its variance-reduced counterpart, that can effectively learn a robust policy despite distributional shifts.
A series of numerical experiments confirm the theoretical findings and the efficiency of the algorithms in handling distributional shifts.
arXiv Detail & Related papers (2023-05-28T19:40:46Z) - Achieving the Asymptotically Optimal Sample Complexity of Offline Reinforcement Learning: A DRO-Based Approach [36.88301225561535]
offline reinforcement learning aims to learn from pre-collected datasets without active exploration.
Existing approaches adopt a pessimistic stance towards uncertainty by penalizing rewards of under-explored state-action pairs to estimate value functions conservatively.
We show that the distributionally robust optimization (DRO) based approach can also address these challenges and is asymptotically minimax optimal
arXiv Detail & Related papers (2023-05-22T17:50:18Z) - A Finite Sample Complexity Bound for Distributionally Robust Q-learning [17.96094201655567]
We consider a reinforcement learning setting in which the deployment environment is different from the training environment.
Applying a robust Markov decision processes formulation, we extend the distributionally robust $Q$-learning framework studied in Liu et al.
This is the first sample complexity result for the model-free robust RL problem.
arXiv Detail & Related papers (2023-02-26T01:15:32Z) - Reaching Goals is Hard: Settling the Sample Complexity of the Stochastic
Shortest Path [106.37656068276902]
We study the sample complexity of learning an $epsilon$-optimal policy in the Shortest Path (SSP) problem.
We derive complexity bounds when the learner has access to a generative model.
We show that there exists a worst-case SSP instance with $S$ states, $A$ actions, minimum cost $c_min$, and maximum expected cost of the optimal policy over all states $B_star$.
arXiv Detail & Related papers (2022-10-10T18:34:32Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
We analyze the problem of estimating optimal $Q$-value functions for a discounted Markov decision process with discrete states and actions.
Using a local minimax framework, we show that this functional arises in lower bounds on the accuracy on any estimation procedure.
In the other direction, we establish the sharpness of our lower bounds, up to factors logarithmic in the state and action spaces, by analyzing a variance-reduced version of $Q$-learning.
arXiv Detail & Related papers (2021-06-28T00:38:54Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.