Achieving the Asymptotically Optimal Sample Complexity of Offline Reinforcement Learning: A DRO-Based Approach
- URL: http://arxiv.org/abs/2305.13289v4
- Date: Sat, 28 Sep 2024 22:56:24 GMT
- Title: Achieving the Asymptotically Optimal Sample Complexity of Offline Reinforcement Learning: A DRO-Based Approach
- Authors: Yue Wang, Jinjun Xiong, Shaofeng Zou,
- Abstract summary: offline reinforcement learning aims to learn from pre-collected datasets without active exploration.
Existing approaches adopt a pessimistic stance towards uncertainty by penalizing rewards of under-explored state-action pairs to estimate value functions conservatively.
We show that the distributionally robust optimization (DRO) based approach can also address these challenges and is asymptotically minimax optimal
- Score: 36.88301225561535
- License:
- Abstract: Offline reinforcement learning aims to learn from pre-collected datasets without active exploration. This problem faces significant challenges, including limited data availability and distributional shifts. Existing approaches adopt a pessimistic stance towards uncertainty by penalizing rewards of under-explored state-action pairs to estimate value functions conservatively. In this paper, we show that the distributionally robust optimization (DRO) based approach can also address these challenges and is {asymptotically minimax optimal}. Specifically, we directly model the uncertainty in the transition kernel and construct an uncertainty set of statistically plausible transition kernels. We then show that the policy that optimizes the worst-case performance over this uncertainty set has a near-optimal performance in the underlying problem. We first design a metric-based distribution-based uncertainty set such that with high probability the true transition kernel is in this set. We prove that to achieve a sub-optimality gap of $\epsilon$, the sample complexity is $\mathcal{O}(S^2C^{\pi^*}\epsilon^{-2}(1-\gamma)^{-4})$, where $\gamma$ is the discount factor, $S$ is the number of states, and $C^{\pi^*}$ is the single-policy clipped concentrability coefficient which quantifies the distribution shift. To achieve the optimal sample complexity, we further propose a less conservative value-function-based uncertainty set, which, however, does not necessarily include the true transition kernel. We show that an improved sample complexity of $\mathcal{O}(SC^{\pi^*}\epsilon^{-2}(1-\gamma)^{-3})$ can be obtained, which asymptotically matches with the minimax lower bound for offline reinforcement learning, and thus is asymptotically minimax optimal.
Related papers
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - Improved Sample Complexity Bounds for Distributionally Robust
Reinforcement Learning [3.222802562733787]
We consider the problem of learning a control policy that is robust against the parameter mismatches between the training environment and testing environment.
We propose the Robust Phased Value Learning (RPVL) algorithm to solve this problem for the uncertainty sets specified by four different divergences.
We show that our algorithm achieves $tildemathcalO(|mathcalSmathcalA| H5)$ sample complexity, which is uniformly better than the existing results.
arXiv Detail & Related papers (2023-03-05T21:47:08Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Sharper Rates and Flexible Framework for Nonconvex SGD with Client and
Data Sampling [64.31011847952006]
We revisit the problem of finding an approximately stationary point of the average of $n$ smooth and possibly non-color functions.
We generalize the $smallsfcolorgreen$ so that it can provably work with virtually any sampling mechanism.
We provide the most general and most accurate analysis of optimal bound in the smooth non-color regime.
arXiv Detail & Related papers (2022-06-05T21:32:33Z) - Stochastic regularized majorization-minimization with weakly convex and
multi-convex surrogates [0.0]
We show that the first optimality gap of the proposed algorithm decays at the rate of the expected loss for various methods under nontens dependent data setting.
We obtain first convergence point for various methods under nontens dependent data setting.
arXiv Detail & Related papers (2022-01-05T15:17:35Z) - Distributed Sparse Regression via Penalization [5.990069843501885]
We study linear regression over a network of agents, modeled as an undirected graph (with no centralized node)
The estimation problem is formulated as the minimization of the sum of the local LASSO loss functions plus a quadratic penalty of the consensus constraint.
We show that the proximal-gradient algorithm applied to the penalized problem converges linearly up to a tolerance of the order of the centralized statistical error.
arXiv Detail & Related papers (2021-11-12T01:51:50Z) - Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis [16.499651513178012]
Distributionally robust optimization (DRO) is a widely-used approach to learn models that are robust against distribution shift.
We provide non-asymptotic convergence guarantees even though the objective function is possibly prominent nonsmooth- and has normalized gradient descent.
arXiv Detail & Related papers (2021-10-24T14:56:38Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z) - Stochastic Proximal Gradient Algorithm with Minibatches. Application to
Large Scale Learning Models [2.384873896423002]
We develop and analyze minibatch variants of gradient algorithm for general composite objective functions with nonsmooth components.
We provide complexity for constant and variable stepsize iteration policies obtaining that, for minibatch size $N$, after $mathcalO(frac1Nepsilon)$ $epsilon-$subity is attained in expected quadratic distance to optimal solution.
arXiv Detail & Related papers (2020-03-30T10:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.