ISAAQ: Ising Machine Assisted Quantum Compiler
- URL: http://arxiv.org/abs/2303.02830v1
- Date: Mon, 6 Mar 2023 01:47:10 GMT
- Title: ISAAQ: Ising Machine Assisted Quantum Compiler
- Authors: Soshun Naito, Yoshihiko Hasegawa, Yoshiki Matsuda, Shu Tanaka
- Abstract summary: We propose ISing mAchine Assisted Quantum compiler (ISAAQ) to perform qubit routing with Ising machines.
ISAAQ accurately estimates the compilation costs by updating itself using previous compilation results.
ISAAQ exploits a cost-reduction method that implements commutative logical Controlled-NOT (CNOT) gates with fewer physical CNOT gates.
- Score: 3.8137985834223502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is imperative to compile quantum circuits for Noisy Intermediate-Scale
Quantum (NISQ) devices because of the limited connectivity of physical qubits
and the high error rates of gate operations. One of the most critical steps in
quantum circuit compilation is qubit routing, an NP-Hard problem that involves
placing and moving logical qubits to minimize compilation overhead. In this
study, we propose ISing mAchine Assisted Quantum compiler (ISAAQ) to perform
qubit routing with Ising machines, which can efficiently solve Quadratic
Unconstrained Binary Optimization (QUBO) problems. ISAAQ accurately estimates
the compilation costs by updating itself using previous compilation results,
and accelerates qubit routing by solving QUBO problems in parallel with
multiple Ising machines. In addition, ISAAQ exploits a cost-reduction method
that implements commutative logical Controlled-NOT (CNOT) gates with fewer
physical CNOT gates, which is particularly effective for planar devices when
implementing original gates. Experimental results on both IBM QX5 and IBM QX20
show that ISAAQ outperforms the heuristic methods available in Qiskit and tket,
as well as an existing QUBO method, requiring fewer physical CNOT gates for
most benchmark circuits. ISAAQ performs particularly well on large circuits,
demonstrating its strong scalability with respect to the number of logical CNOT
gates.
Related papers
- Quantum Multiplexer Simplification for State Preparation [0.7270112855088837]
We propose an algorithm that detects whether a given quantum state can be factored into substates.
The simplification is done by eliminating controls of quantum multiplexers.
Considering efficiency in terms of depth and number of CNOT gates, our method is competitive with the methods in the literature.
arXiv Detail & Related papers (2024-09-09T13:53:02Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances [0.0]
This paper establishes a new protocol to generate graph instances with their associated near-optimal minor-embedding mappings to D-Wave Quantum Annealers.
We use this method to benchmark QA on large instances of unconstrained and constrained optimization problems and compare the performance of the QPU with efficient classical solvers.
arXiv Detail & Related papers (2024-05-02T15:19:39Z) - Compiler for Distributed Quantum Computing: a Reinforcement Learning Approach [6.347685922582191]
We introduce a novel compiler that prioritizes reducing the expected execution time by jointly managing the generation and routing of EPR pairs.
We present a real-time, adaptive approach to compiler design, accounting for the nature of entanglement generation and the operational demands of quantum circuits.
Our contributions are twofold: (i) we model the optimal compiler for DQC using a Markov Decision Process (MDP) formulation, establishing the existence of an optimal algorithm, and (ii) we introduce a constrained Reinforcement Learning (RL) method to approximate this optimal compiler.
arXiv Detail & Related papers (2024-04-25T23:03:20Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Verifying Results of the IBM Qiskit Quantum Circuit Compilation Flow [7.619626059034881]
We propose an efficient scheme for quantum circuit equivalence checking.
The proposed scheme allows to verify even large circuit instances with tens of thousands of operations within seconds or even less.
arXiv Detail & Related papers (2020-09-04T19:58:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.