A Review of Deep Learning-Powered Mesh Reconstruction Methods
- URL: http://arxiv.org/abs/2303.02879v1
- Date: Mon, 6 Mar 2023 04:14:04 GMT
- Title: A Review of Deep Learning-Powered Mesh Reconstruction Methods
- Authors: Zhiqin Chen
- Abstract summary: Deep learning has enabled high-quality 3D shape reconstruction from various sources.
To be used in common 3D applications, reconstructed shapes need to be represented as polygonal meshes.
- Score: 8.244104560094721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the recent advances in hardware and rendering techniques, 3D models have
emerged everywhere in our life. Yet creating 3D shapes is arduous and requires
significant professional knowledge. Meanwhile, Deep learning has enabled
high-quality 3D shape reconstruction from various sources, making it a viable
approach to acquiring 3D shapes with minimal effort. Importantly, to be used in
common 3D applications, the reconstructed shapes need to be represented as
polygonal meshes, which is a challenge for neural networks due to the
irregularity of mesh tessellations. In this survey, we provide a comprehensive
review of mesh reconstruction methods that are powered by machine learning. We
first describe various representations for 3D shapes in the deep learning
context. Then we review the development of 3D mesh reconstruction methods from
voxels, point clouds, single images, and multi-view images. Finally, we
identify several challenges in this field and propose potential future
directions.
Related papers
- LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review [0.08823202672546056]
This review paper focuses on state-of-the-art techniques for 3D reconstruction, including the generation of novel, unseen views.
An overview of recent developments in the Gaussian Splatting method is provided, covering input types, model structures, output representations, and training strategies.
arXiv Detail & Related papers (2024-05-06T12:32:38Z) - 3D Face Reconstruction Using A Spectral-Based Graph Convolution Encoder [3.749406324648861]
We propose an innovative approach that integrates existing 2D features with 3D features to guide the model learning process.
Our model is trained using 2D-3D data pairs from a combination of datasets and achieves state-of-the-art performance on the NoW benchmark.
arXiv Detail & Related papers (2024-03-08T11:09:46Z) - CVRecon: Rethinking 3D Geometric Feature Learning For Neural
Reconstruction [12.53249207602695]
We propose an end-to-end 3D neural reconstruction framework CVRecon.
We exploit the rich geometric embedding in the cost volumes to facilitate 3D geometric feature learning.
arXiv Detail & Related papers (2023-04-28T05:30:19Z) - 3 Dimensional Dense Reconstruction: A Review of Algorithms and Dataset [19.7595986056387]
3D dense reconstruction refers to the process of obtaining the complete shape and texture features of 3D objects from 2D planar images.
This work systematically introduces classical methods of 3D dense reconstruction based on geometric and optical models.
It also introduces datasets for deep learning and the performance and advantages and disadvantages demonstrated by deep learning methods on these datasets.
arXiv Detail & Related papers (2023-04-19T01:56:55Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - Neural Template: Topology-aware Reconstruction and Disentangled
Generation of 3D Meshes [52.038346313823524]
This paper introduces a novel framework called DTNet for 3D mesh reconstruction and generation via Disentangled Topology.
Our method is able to produce high-quality meshes, particularly with diverse topologies, as compared with the state-of-the-art methods.
arXiv Detail & Related papers (2022-06-10T08:32:57Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - 3D Shape Reconstruction from 2D Images with Disentangled Attribute Flow [61.62796058294777]
Reconstructing 3D shape from a single 2D image is a challenging task.
Most of the previous methods still struggle to extract semantic attributes for 3D reconstruction task.
We propose 3DAttriFlow to disentangle and extract semantic attributes through different semantic levels in the input images.
arXiv Detail & Related papers (2022-03-29T02:03:31Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.