Non-Parametric Outlier Synthesis
- URL: http://arxiv.org/abs/2303.02966v1
- Date: Mon, 6 Mar 2023 08:51:00 GMT
- Title: Non-Parametric Outlier Synthesis
- Authors: Leitian Tao, Xuefeng Du, Xiaojin Zhu, Yixuan Li
- Abstract summary: Out-of-distribution (OOD) detection is indispensable for safely deploying machine learning models in the wild.
We propose a novel framework, Non-Parametric Outlier Synthesis (NPOS), which generates artificial OOD training data.
We show that our synthesis approach can be mathematically interpreted as a rejection sampling framework.
- Score: 35.20765580915213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) detection is indispensable for safely deploying
machine learning models in the wild. One of the key challenges is that models
lack supervision signals from unknown data, and as a result, can produce
overconfident predictions on OOD data. Recent work on outlier synthesis modeled
the feature space as parametric Gaussian distribution, a strong and restrictive
assumption that might not hold in reality. In this paper, we propose a novel
framework, Non-Parametric Outlier Synthesis (NPOS), which generates artificial
OOD training data and facilitates learning a reliable decision boundary between
ID and OOD data. Importantly, our proposed synthesis approach does not make any
distributional assumption on the ID embeddings, thereby offering strong
flexibility and generality. We show that our synthesis approach can be
mathematically interpreted as a rejection sampling framework. Extensive
experiments show that NPOS can achieve superior OOD detection performance,
outperforming the competitive rivals by a significant margin. Code is publicly
available at https://github.com/deeplearning-wisc/npos.
Related papers
- Non-Linear Outlier Synthesis for Out-of-Distribution Detection [5.019613806273252]
We present NCIS, which enhances the quality of synthetic outliers by operating directly in the diffusion's model embedding space.
We demonstrate that these improvements yield new state-of-the-art OOD detection results on standard ImageNet100 and CIFAR100 benchmarks.
arXiv Detail & Related papers (2024-11-20T09:47:29Z) - Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure [0.0]
We propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs)
In the experiments, we found that metric learning-based loss functions perform better than the softmax.
Our approach outperforms strong baselines in conventional OOD detection metrics.
arXiv Detail & Related papers (2024-05-01T16:58:22Z) - How Does Unlabeled Data Provably Help Out-of-Distribution Detection? [63.41681272937562]
Unlabeled in-the-wild data is non-trivial due to the heterogeneity of both in-distribution (ID) and out-of-distribution (OOD) data.
This paper introduces a new learning framework SAL (Separate And Learn) that offers both strong theoretical guarantees and empirical effectiveness.
arXiv Detail & Related papers (2024-02-05T20:36:33Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
We show for the first time how synthetic data can be specifically generated to assess comprehensively the real-world reliability of semantic segmentation models.
This synthetic data is employed to evaluate the robustness of pretrained segmenters.
We demonstrate how our approach can be utilized to enhance the calibration and OOD detection capabilities of segmenters.
arXiv Detail & Related papers (2023-12-14T18:56:07Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-distribution (OOD) detection is important for deploying reliable machine learning models on real-world applications.
Recent advances in outlier exposure have shown promising results on OOD detection via fine-tuning model with informatively sampled auxiliary outliers.
We propose a novel framework, namely, Diversified Outlier Exposure (DivOE), for effective OOD detection via informative extrapolation based on the given auxiliary outliers.
arXiv Detail & Related papers (2023-10-21T07:16:09Z) - Perturbation-Assisted Sample Synthesis: A Novel Approach for Uncertainty
Quantification [3.175239447683357]
This paper introduces a novel Perturbation-Assisted Inference (PAI) framework utilizing synthetic data generated by the Perturbation-Assisted Sample Synthesis (PASS) method.
The framework focuses on uncertainty quantification in complex data scenarios, particularly involving unstructured data.
We demonstrate the effectiveness of PAI in advancing uncertainty quantification in complex, data-driven tasks by applying it to diverse areas such as image synthesis, sentiment word analysis, multimodal inference, and the construction of prediction intervals.
arXiv Detail & Related papers (2023-05-30T01:01:36Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
Outlier detection tasks have been playing a critical role in AI safety.
Deep neural network classifiers usually tend to incorrectly classify out-of-distribution (OOD) inputs into in-distribution classes with high confidence.
We propose an alternative probabilistic paradigm that is both practically useful and theoretically viable for the OOD detection tasks.
arXiv Detail & Related papers (2022-09-26T15:59:55Z) - VOS: Learning What You Don't Know by Virtual Outlier Synthesis [23.67449949146439]
Out-of-distribution (OOD) detection has received much attention lately due to its importance in the safe deployment of neural networks.
Previous approaches rely on real outlier datasets for model regularization.
We present VOS, a novel framework for OOD detection by adaptively synthesizing virtual outliers.
arXiv Detail & Related papers (2022-02-02T18:43:01Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.