Decoding the Projective Transverse Field Ising Model
- URL: http://arxiv.org/abs/2303.03081v2
- Date: Tue, 20 Jun 2023 17:48:09 GMT
- Title: Decoding the Projective Transverse Field Ising Model
- Authors: Felix Roser, Hans Peter B\"uchler, and Nicolai Lang
- Abstract summary: We study a projective transverse field Ising model with a focus on its capabilities as a quantum error correction code.
We demonstrate that there is a finite threshold below which quantum information encoded in an initially entangled state can be retrieved reliably.
This implies that there is a finite regime where quantum information is protected by the projective dynamics, but cannot be retrieved by using syndrome measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The competition between non-commuting projective measurements in discrete
quantum circuits can give rise to entanglement transitions. It separates a
regime where initially stored quantum information survives the time evolution
from a regime where the measurements destroy the quantum information. Here we
study one such system - the projective transverse field Ising model - with a
focus on its capabilities as a quantum error correction code. The idea is to
interpret one type of measurement as an error and the other type as a syndrome
measurement. We demonstrate that there is a finite threshold below which
quantum information encoded in an initially entangled state can be retrieved
reliably. In particular, we implement the maximum likelihood decoder to
demonstrate that the error correction threshold is distinct from the
entanglement transition. This implies that there is a finite regime where
quantum information is protected by the projective dynamics, but cannot be
retrieved by using syndrome measurements.
Related papers
- Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
We extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Quantum Non-Demolition Measurements and Leggett-Garg inequality [0.0]
Quantum non-demolition measurements define a non-invasive protocol to extract information from a quantum system.
This protocol leads to a quasi-probability distribution for the measured observable outcomes, which can be negative.
We show that there are situations in which Leggett-Garg inequalities are satisfied even if the macrorealism condition is violated.
arXiv Detail & Related papers (2024-07-31T18:04:51Z) - Robust projective measurements through measuring code-inspired
observables [8.339831319589134]
We present a scheme that implements a robust projective measurement through measuring code-inspired observables.
We can correct $t$ errors on the classical outcomes of the observables' measurement if the classical code corrects $t$ errors.
Our scheme works for any projective POVM, and hence can allow robust syndrome extraction procedures in non-stabilizer quantum error correction codes.
arXiv Detail & Related papers (2024-02-06T15:49:34Z) - Randomly Monitored Quantum Codes [8.557392136621894]
Recent studies have shown that quantum measurement itself can induce novel quantum phenomena.
One example is a monitored random circuit, which can generate long-range entanglement faster than a random unitary circuit.
In particular, we demonstrate that for a large class of quantum error-correcitng codes, it is impossible to destroy the encoded information through random single-qubit Pauli measurements.
arXiv Detail & Related papers (2024-01-31T19:53:06Z) - Quantum Measurement Encoding for Quantum Metrology [3.4840877804354236]
We study quantum metrology when the decoherence effect is unraveled by a set of quantum measurements.
In our case, the estimation parameter is encoded into a quantum state through a quantum measurement.
We derive a universal formula for the loss of precision when the precision-preserving conditions are violated in non-Hermitian sensing.
arXiv Detail & Related papers (2024-01-28T10:22:50Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Observation of measurement-induced quantum phases in a trapped-ion
quantum computer [1.327151508840301]
Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment.
We explore this balance via random quantum circuits implemented on a trapped ion quantum computer.
We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.
arXiv Detail & Related papers (2021-06-10T16:08:50Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.