Robust projective measurements through measuring code-inspired
observables
- URL: http://arxiv.org/abs/2402.04093v1
- Date: Tue, 6 Feb 2024 15:49:34 GMT
- Title: Robust projective measurements through measuring code-inspired
observables
- Authors: Yingkai Ouyang
- Abstract summary: We present a scheme that implements a robust projective measurement through measuring code-inspired observables.
We can correct $t$ errors on the classical outcomes of the observables' measurement if the classical code corrects $t$ errors.
Our scheme works for any projective POVM, and hence can allow robust syndrome extraction procedures in non-stabilizer quantum error correction codes.
- Score: 8.339831319589134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum measurements are ubiquitous in quantum information processing tasks,
but errors can render their outputs unreliable. Here, we present a scheme that
implements a robust projective measurement through measuring code-inspired
observables. Namely, given a projective POVM, a classical code and a constraint
on the number of measurement outcomes each observable can have, we construct
commuting observables whose measurement is equivalent to the projective
measurement in the noiseless setting. Moreover, we can correct $t$ errors on
the classical outcomes of the observables' measurement if the classical code
corrects $t$ errors. Since our scheme does not require the encoding of quantum
data onto a quantum error correction code, it can help construct robust
measurements for near-term quantum algorithms that do not use quantum error
correction. Moreover, our scheme works for any projective POVM, and hence can
allow robust syndrome extraction procedures in non-stabilizer quantum error
correction codes.
Related papers
- Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms [1.4767596539913115]
A major challenge in performing quantum error correction (QEC) is implementing reliable measurements and conditional feed-forward operations.
We propose implementations of small measurement-free QEC schemes, which are fault-tolerant to circuit-level noise.
We highlight how this alternative approach paves the way towards implementing resource-efficient measurement-free QEC on neutral-atom arrays.
arXiv Detail & Related papers (2024-04-17T18:01:57Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - Decoding the Projective Transverse Field Ising Model [0.0]
We study a projective transverse field Ising model with a focus on its capabilities as a quantum error correction code.
We demonstrate that there is a finite threshold below which quantum information encoded in an initially entangled state can be retrieved reliably.
This implies that there is a finite regime where quantum information is protected by the projective dynamics, but cannot be retrieved by using syndrome measurements.
arXiv Detail & Related papers (2023-03-06T12:45:11Z) - Virtual quantum error detection [0.17999333451993949]
We propose a protocol called virtual quantum error detection (VQED)
VQED virtually allows for evaluating computation results corresponding to post-selected quantum states obtained through quantum error detection.
For some simple error models, the results obtained using VQED are robust against the noise that occurred during the operation of VQED.
arXiv Detail & Related papers (2023-02-06T08:52:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Error metric for non-trace-preserving quantum operations [3.6492255655113395]
We study the problem of measuring errors in non-trace-preserving quantum operations.
We propose an error metric that efficiently provides an upper bound on the trace distance between the normalized output states.
arXiv Detail & Related papers (2021-10-05T18:54:14Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Quantum tomography of noisy ion-based qudits [0.0]
We show that it is possible to construct a quantum measurement protocol that contains no more than a single quantum operation in each measurement circuit.
The measures described can significantly improve the accuracy of quantum tomography of real ion-based qudits.
arXiv Detail & Related papers (2020-11-09T04:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.