Expressive Whole-Body Control for Humanoid Robots
- URL: http://arxiv.org/abs/2402.16796v2
- Date: Wed, 6 Mar 2024 02:19:38 GMT
- Title: Expressive Whole-Body Control for Humanoid Robots
- Authors: Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang, Ge Yang, Xiaolong
Wang
- Abstract summary: We learn a whole-body control policy on a human-sized robot to mimic human motions as realistic as possible.
With training in simulation and Sim2Real transfer, our policy can control a humanoid robot to walk in different styles, shake hands with humans, and even dance with a human in the real world.
- Score: 20.132927075816742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can we enable humanoid robots to generate rich, diverse, and expressive
motions in the real world? We propose to learn a whole-body control policy on a
human-sized robot to mimic human motions as realistic as possible. To train
such a policy, we leverage the large-scale human motion capture data from the
graphics community in a Reinforcement Learning framework. However, directly
performing imitation learning with the motion capture dataset would not work on
the real humanoid robot, given the large gap in degrees of freedom and physical
capabilities. Our method Expressive Whole-Body Control (Exbody) tackles this
problem by encouraging the upper humanoid body to imitate a reference motion,
while relaxing the imitation constraint on its two legs and only requiring them
to follow a given velocity robustly. With training in simulation and Sim2Real
transfer, our policy can control a humanoid robot to walk in different styles,
shake hands with humans, and even dance with a human in the real world. We
conduct extensive studies and comparisons on diverse motions in both simulation
and the real world to show the effectiveness of our approach.
Related papers
- HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
We introduce a full-stack system for humanoids to learn motion and autonomous skills from human data.
We first train a low-level policy in simulation via reinforcement learning using existing 40-hour human motion datasets.
We then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously.
arXiv Detail & Related papers (2024-06-15T00:41:34Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation [34.65637397405485]
We present Human to Humanoid (H2O), a framework that enables real-time whole-body teleoperation of a humanoid robot with only an RGB camera.
We train a robust real-time humanoid motion imitator in simulation using these refined motions and transfer it to the real humanoid robot in a zero-shot manner.
To the best of our knowledge, this is the first demonstration to achieve learning-based real-time whole-body humanoid teleoperation.
arXiv Detail & Related papers (2024-03-07T12:10:41Z) - SynH2R: Synthesizing Hand-Object Motions for Learning Human-to-Robot
Handovers [37.49601724575655]
Vision-based human-to-robot handover is an important and challenging task in human-robot interaction.
We introduce a framework that can generate plausible human grasping motions suitable for training the robot.
This allows us to generate synthetic training and testing data with 100x more objects than previous work.
arXiv Detail & Related papers (2023-11-09T18:57:02Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
We present a fully learning-based approach for real-world humanoid locomotion.
Our controller can walk over various outdoor terrains, is robust to external disturbances, and can adapt in context.
arXiv Detail & Related papers (2023-03-06T18:59:09Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
We present a reinforcement learning based method for teaching a real world bipedal robot to perform movements directly from motion capture data.
Our method seamlessly transitions from training in a simulation environment to executing on a physical robot.
We demonstrate our method on an internally developed humanoid robot with movements ranging from a dynamic walk cycle to complex balancing and waving.
arXiv Detail & Related papers (2021-05-26T00:49:37Z) - Residual Force Control for Agile Human Behavior Imitation and Extended
Motion Synthesis [32.22704734791378]
Reinforcement learning has shown great promise for realistic human behaviors by learning humanoid control policies from motion capture data.
It is still very challenging to reproduce sophisticated human skills like ballet dance, or to stably imitate long-term human behaviors with complex transitions.
We propose a novel approach, residual force control (RFC), that augments a humanoid control policy by adding external residual forces into the action space.
arXiv Detail & Related papers (2020-06-12T17:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.