Learning Humanoid Locomotion over Challenging Terrain
- URL: http://arxiv.org/abs/2410.03654v1
- Date: Fri, 4 Oct 2024 17:57:09 GMT
- Title: Learning Humanoid Locomotion over Challenging Terrain
- Authors: Ilija Radosavovic, Sarthak Kamat, Trevor Darrell, Jitendra Malik,
- Abstract summary: We present a learning-based approach for blind humanoid locomotion capable of traversing challenging natural and man-made terrains.
Our model is first pre-trained on a dataset of flat-ground trajectories with sequence modeling, and then fine-tuned on uneven terrain using reinforcement learning.
We evaluate our model on a real humanoid robot across a variety of terrains, including rough, deformable, and sloped surfaces.
- Score: 84.35038297708485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humanoid robots can, in principle, use their legs to go almost anywhere. Developing controllers capable of traversing diverse terrains, however, remains a considerable challenge. Classical controllers are hard to generalize broadly while the learning-based methods have primarily focused on gentle terrains. Here, we present a learning-based approach for blind humanoid locomotion capable of traversing challenging natural and man-made terrain. Our method uses a transformer model to predict the next action based on the history of proprioceptive observations and actions. The model is first pre-trained on a dataset of flat-ground trajectories with sequence modeling, and then fine-tuned on uneven terrain using reinforcement learning. We evaluate our model on a real humanoid robot across a variety of terrains, including rough, deformable, and sloped surfaces. The model demonstrates robust performance, in-context adaptation, and emergent terrain representations. In real-world case studies, our humanoid robot successfully traversed over 4 miles of hiking trails in Berkeley and climbed some of the steepest streets in San Francisco.
Related papers
- Advancing Humanoid Locomotion: Mastering Challenging Terrains with Denoising World Model Learning [11.648198428063415]
We introduce Denoising World Model Learning (DWL), an end-to-end reinforcement learning framework for humanoid locomotion control.
DWL demonstrates the world's first humanoid robot to master real-world challenging terrains such as snowy and inclined land in the wild, up and down stairs, and extremely uneven terrains.
arXiv Detail & Related papers (2024-08-26T17:59:03Z) - BiRoDiff: Diffusion policies for bipedal robot locomotion on unseen terrains [0.9480364746270075]
Locomotion on unknown terrains is essential for bipedal robots to handle novel real-world challenges.
We introduce a lightweight framework that learns a single walking controller that yields locomotion on multiple terrains.
arXiv Detail & Related papers (2024-07-07T16:03:33Z) - Humanoid Locomotion as Next Token Prediction [84.21335675130021]
Our model is a causal transformer trained via autoregressive prediction of sensorimotor trajectories.
We show that our model enables a full-sized humanoid to walk in San Francisco zero-shot.
Our model can transfer to the real world even when trained on only 27 hours of walking data, and can generalize commands not seen during training like walking backward.
arXiv Detail & Related papers (2024-02-29T18:57:37Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
We present a fully learning-based approach for real-world humanoid locomotion.
Our controller can walk over various outdoor terrains, is robust to external disturbances, and can adapt in context.
arXiv Detail & Related papers (2023-03-06T18:59:09Z) - Legged Locomotion in Challenging Terrains using Egocentric Vision [70.37554680771322]
We present the first end-to-end locomotion system capable of traversing stairs, curbs, stepping stones, and gaps.
We show this result on a medium-sized quadruped robot using a single front-facing depth camera.
arXiv Detail & Related papers (2022-11-14T18:59:58Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - Quadruped Locomotion on Non-Rigid Terrain using Reinforcement Learning [10.729374293332281]
We present a novel reinforcement learning framework for learning locomotion on non-rigid dynamic terrains.
A trained robot with 55cm base length can walk on terrain that can sink up to 5cm.
We show the effectiveness of our method by training the robot with various terrain conditions.
arXiv Detail & Related papers (2021-07-07T00:34:23Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.