A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models
- URL: http://arxiv.org/abs/2408.02320v1
- Date: Mon, 5 Aug 2024 09:02:24 GMT
- Title: A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models
- Authors: Gen Li, Yuting Wei, Yuejie Chi, Yuxin Chen,
- Abstract summary: We develop non-asymptotic convergence theory for a diffusion-based sampler.
We prove that $d/varepsilon$ are sufficient to approximate the target distribution to within $varepsilon$ total-variation distance.
Our results also characterize how $ell$ score estimation errors affect the quality of the data generation processes.
- Score: 45.60426164657739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models, which convert noise into new data instances by learning to reverse a diffusion process, have become a cornerstone in contemporary generative modeling. In this work, we develop non-asymptotic convergence theory for a popular diffusion-based sampler (i.e., the probability flow ODE sampler) in discrete time, assuming access to $\ell_2$-accurate estimates of the (Stein) score functions. For distributions in $\mathbb{R}^d$, we prove that $d/\varepsilon$ iterations -- modulo some logarithmic and lower-order terms -- are sufficient to approximate the target distribution to within $\varepsilon$ total-variation distance. This is the first result establishing nearly linear dimension-dependency (in $d$) for the probability flow ODE sampler. Imposing only minimal assumptions on the target data distribution (e.g., no smoothness assumption is imposed), our results also characterize how $\ell_2$ score estimation errors affect the quality of the data generation processes. In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach without the need of resorting to SDE and ODE toolboxes.
Related papers
- Straightness of Rectified Flow: A Theoretical Insight into Wasserstein Convergence [54.580605276017096]
Diffusion models have emerged as a powerful tool for image generation and denoising.
Recently, Liu et al. designed a novel alternative generative model Rectified Flow (RF)
RF aims to learn straight flow trajectories from noise to data using a sequence of convex optimization problems.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - $O(d/T)$ Convergence Theory for Diffusion Probabilistic Models under Minimal Assumptions [6.76974373198208]
We establish a fast convergence theory for a popular SDE-based sampler under minimal assumptions.
Our analysis shows that, provided $ell_2$-accurate estimates of the score functions, the total variation distance between the target and generated distributions is upper bounded by $O(d/T)$.
This is achieved through a novel set of analytical tools that provides a fine-grained characterization of how the error propagates at each step of the reverse process.
arXiv Detail & Related papers (2024-09-27T17:59:10Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - Convergence Analysis of Probability Flow ODE for Score-based Generative Models [5.939858158928473]
We study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives.
We prove the total variation between the target and the generated data distributions can be bounded above by $mathcalO(d3/4delta1/2)$ in the continuous time level.
arXiv Detail & Related papers (2024-04-15T12:29:28Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
We provide the first convergence bounds which are linear in the data dimension.
We show that diffusion models require at most $tilde O(fracd log2(1/delta)varepsilon2)$ steps to approximate an arbitrary distribution.
arXiv Detail & Related papers (2023-08-07T16:01:14Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
arXiv Detail & Related papers (2023-03-06T18:59:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.